Butcher algebra of the matrix

Sergey Khashin
http://math.ivanovo.ac.ru/dalgebra/Khashin/index.html
Ivanovo State University, Russia
New York Group Theory Seminar

Plan

Preliminaries

Known methods

Butcher algebras

New simplifying assumptions

Conclusion

What is Runge-Kutta methods

Let an initial value problem be specified as follows.

$$
y^{\prime}=f(t, y), t \in \mathbb{R}, y \in \mathbb{R}^{n}, y\left(t_{0}\right)=y_{0}
$$

Now pick a step-size $h>0$ and define

$$
y_{1}=y_{0}+\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) / 6
$$

where

$$
\begin{array}{ll}
k_{1}=h f\left(t_{0}\right. & \left., y_{0}\right), \\
k_{2}=h f\left(t_{0}+\frac{h}{2}\right. & \left., y_{0}+\frac{1}{2} k_{1}\right), \\
k_{3}=h f\left(t_{0}+\frac{h}{2}\right. & \left., y_{0}+\frac{1}{2} k_{2}\right), \\
k_{4}=h f\left(t_{0}+h\right. & \left., y_{0}+k_{3}\right),
\end{array}
$$

Classical Runge-Kutta method is a fourth-order methods with four stages, $R K(4,4)$.

Butcher tableau

All coefficients can be combined into one table(Butcher tableau):

c_{2}	a_{21}			
c_{3}	a_{31}	a_{32}		
c_{4}	a_{41}	a_{42}	a_{43}	
	b_{1}	b_{2}	b_{3}	b_{4}

where

$$
\begin{aligned}
c_{2} & =a_{21} \\
c_{3} & =a_{31}+a_{32} \\
c_{4} & =a_{41}+a_{42}+a_{43} \\
1 & =b_{1}+b_{2}+b_{3}+b_{4}
\end{aligned}
$$

$R K(4,4)$ equations

Coefficients $\left(a_{i j}, b_{j}\right)$ must satisfy the equations (order conditions or Butcher equations):

$$
\begin{aligned}
& \text { 0) } b_{1}+b_{2}+b_{3}+b_{4} \\
& \text { 1) } b_{2} c_{2}+b_{3} c_{3}+b_{4} c_{4} \\
& =1 \text {, } \\
& \text { 2) } b_{3} a_{32} c_{2}+b_{4}\left(a_{42} c_{2}+a_{43} c_{3}\right) \\
& =1 / 2 \text {, } \\
& \text { 2) } b_{3} a_{32} c_{2}+b_{4}\left(a_{42} c_{2}+a_{43} c_{3}\right) \\
& =1 / 6 \text {, } \\
& \text { 3) } b_{2} c_{2}^{2}+b_{3} c_{3}^{2}+b_{4} c_{4}^{2} \\
& =1 / 3 \text {, } \\
& \text { 4) } b_{4} a_{43} a_{32} c_{2} \\
& =1 / 24 \text {, } \\
& \text { 5) } b_{3} c_{3} a_{32} c_{2}+b_{4} c_{4}\left(a_{42} c_{2}+a_{43} c_{3}\right)=1 / 8 \text {, } \\
& \text { 6) } b_{2} c_{2}^{3}+b_{3} c_{3}^{3}+b_{4} c_{4}^{3}=1 / 4 \text {, } \\
& \text { 7) } b_{3} a_{32} c_{2}^{2}+b_{4}\left(a_{42} c_{2}^{2}+a_{43} c_{3}^{2}\right)=1 / 12 \text {, }
\end{aligned}
$$

Extended matrix

For my purposes it is convenient to use an extended $(s+1) \times(s+1)$-matrix A of the $R K(p, s)$-method that is defined as follows.

$$
A=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & \ldots & 0 \\
a_{21} & 0 & 0 & 0 & \ldots & 0 \\
a_{31} & a_{32} & 0 & 0 & \ldots & 0 \\
& \ldots & & & & \\
a_{s 1} & a_{s 2} & \ldots & a_{s, s-1} & 0 & 0 \\
b_{1} & b_{2} & \ldots & b_{s-1} & b_{s} & 0
\end{array}\right)
$$

where as usual the first column can be expressed in terms of the others:

$$
a_{k 1}=c_{k}-a_{k 2}-\cdots-a_{k, k-1} \quad \forall k=2 \ldots s .
$$

John Butcher-1963

For a long time, not only the solution, but also finding the order conditions in general had a big problem. New approaches are gradually accumulated and the breakthrough came in two articles: J.C. Butcher. Coefficients for the study of runge-kutta integration processes. J. Austral. Math. Soc., 3:185-201, 1963.
J.C. Butcher. On Runge-Kutta processes of high orderJ. Austral. Math. Soc., 4:179-194, 1964.
They described the order conditions in general: one equation each rooted tree.

Methods of order 5

In 1964 J.Bucher find the 5-dimensional family of 6-stage methods of order 5 .
J. C. Butcher, On Runge-Kutta processes of high order, J. Austral. Math. Soc. 4 (1964), 179-194.
In 1969 Cassity showed that the Butcher family is only a subvariety of larger, 6-dimensional family.
C. R. Cassity, The complete solution of the fifth order Runge-Kutta equations, SIAM J. Numer. Anal. 6 (1969), 432-436.
What do you mean "found"? This means that given a certain algorithm, by which unfree variables are expressed in terms of free ones.

Methods of order 6

J. Butcher (1966) found the 4-dimensional family of 7-stages methods of order 6 .
S.I.Khashin was numerically found a large number of individual methods of type $R K(6,7)$ and define local dimension solution variety in these points. It turned out that many of the methods are found not to contain in Butcher family.
Some analytic formulas (Maple-functions) was fond by D.Verner and me:
http://math.ivanovo.ac.ru/dalgebra/Khashin/rk/sh_rk.html

Methods of order ≥ 7

J. Butcher found the 2-dimensional family of 9-stages methods of order 7.
In the works of Curtis, Verner, Cooper, and some other authors found some methods of family orders 7, 8 and even 10.
J.H. Verner. Refuge for Runge-Kutta Pairs, http://people.math.sfu.ca/~jverner/
P. Stone. Peter Stone's Maple Worksheets.
http://www.peterstone.name/Maplepgs
Sharp P.W., Verner J.H., Generation of high-order interpolants for explicit Runge-Kutta pairs, TOMS, 24, 1, 13-29. 1998.

Trees

Following standard Butcher's approach, we use trees. We recall operations from graph theory.

Here t_{0} is a tree with only one vertex,
$t_{1}=\alpha t_{0}$ - adding a vertex and an edge to the root,
$t_{2}=\alpha^{2} t_{0}$,
$t_{4}=\alpha\left(t_{2}\right)=\alpha^{3}\left(t_{0}\right)$.
Multiplication of trees:

$$
\begin{aligned}
& t_{3}=t_{1} \cdot t_{1}, \\
& t_{5}=t_{1} \cdot t_{2}, \\
& t_{7}=t_{1} \cdot t_{1} \cdot t_{1} .
\end{aligned}
$$

So we have the following 8 trees of weight ≤ 3.

Trees semigroup

Definition

We denote the set of all non-isomorphic rooted trees as \mathcal{T}.
Theorem
Every tree $t \in \mathcal{T}$ can be obtained from t_{0} by combination of operations α and multiplication of trees.
So, \mathcal{T} is a free semigroup, generated by all "one-leg" trees.

Function $\delta(t)$

Definition

Let $t \in \mathcal{T}$. Then $\delta(t)$ is the product of all orders $\left(w\left(t_{v}\right)+1\right)$, where v denotes a vertex of t and v is not the root:

$$
\delta(t)=\prod_{v \neq \text { root }}\left(w\left(t_{v}\right)+1\right)
$$

where weight $w(t)$ is a number of edges in the tree.
Theorem
The following properties hold:

1. $\delta\left(t_{0}\right)=1$,
2. $\delta\left(t_{1} \cdot t_{2}\right)=\delta\left(t_{1}\right) \delta\left(t_{2}\right)$ for any $t_{1}, t_{2} \in \mathcal{T}$,
3. $\delta(\alpha t)=\delta(t)(w(t)+1)$ for any $t \in \mathcal{T}$.

Let $e=(1, \ldots, 1)^{t} \in \mathbb{R}^{n}$ and "*" - coordinate-wise multiplication in \mathbb{R}^{n}.
For a given $(s+1) \times(s+1)$-matrix A we have a vectors $\Phi_{t}(A)$:

$$
\begin{array}{ll}
\Phi\left(t_{0}\right)=e, & \delta\left(t_{0}\right)=1, \\
\Phi\left(t_{1}\right)=A e, & \delta\left(t_{1}\right)=1, \\
\Phi\left(t_{2}\right)=A^{2} e, & \delta\left(t_{2}\right)=2, \\
\Phi\left(t_{3}\right)=A e * A e, & \delta\left(t_{3}\right)=1, \\
\Phi\left(t_{4}\right)=A^{3} e, & \delta\left(t_{4}\right)=6, \\
\Phi\left(t_{5}\right)=A e * A^{2} e, & \delta\left(t_{5}\right)=2, \\
\Phi\left(t_{6}\right)=A(A e * A e), & \delta\left(t_{6}\right)=2, \\
\Phi\left(t_{7}\right)=A e * A e * A e, & \delta\left(t_{7}\right)=1,
\end{array}
$$

where $e=(1, \ldots, 1)^{t}$ and " $*$ " - coordinate-wise multiplication in \mathbb{R}^{s+1}.

Butcher equations

Theorem
Matrix A is a matrix of RK method of order p, if for each rooted tree t of weight $\leq p$ the last coordinate of vector $\Phi_{t}(A)$ equals $1 / \delta(t)$.

$$
\left(\Phi_{t}(A), e^{\prime}\right)=1 / \delta(t), \text { where } e^{\prime}=(0, \ldots, 0,1)
$$

We will consider this equations only of "one-leg" trees. It is a very large polynomial systems:

order	1	2	3	4	5	6	7	8	9	10
number of eqs	1	2	4	8	17	37	85	200	486	1205
min. number of stages:			4	6	7	9	11	13	≤ 17	

Subspaces L_{k} and M_{k}

Consider subspaces generated by $\Phi_{t}(A)$ with trees of weight k :

$$
L_{k}=<\Phi_{t}(A) \mid w(t)=k>\subset \mathbb{R}^{s+1}
$$

For example,

$$
\begin{aligned}
& L_{0}=<e>, \\
& L_{1}=<A e> \\
& L_{2}=<A^{2} e, A e * A e>, \\
& L_{3}=<A^{3} e, A(A e * A e), A^{2} e * A e, A e * A e * A e>,
\end{aligned}
$$

Consider a filtration in \mathbb{R}^{s+1} : chain of subspaces $0 \subset M_{0} \subset M_{1} \subset M_{2} \ldots$:

$$
\begin{aligned}
& M_{0}=L_{0} \\
& M_{1}=L_{0}+L_{1}, \\
& M_{2}=L_{0}+L_{1}+L_{2}, \\
& M_{3}=L_{0}+L_{1}+L_{2}+L_{3},
\end{aligned}
$$

Theorem This filtration corresponds to the multiplication, that is

$$
M_{i} * M_{j} \subset M_{i+j}, \quad A\left(M_{i}\right) \subset M_{i+1}
$$

Butcher algebra of the matrix

Let A be an $n \times n$ lower triangular matrix with zero diagonal. Consider subspaces $L_{k}=<\Phi_{t}(A)>$ of \mathbb{R}^{n} where t is a tree of weight k and filtration of the space \mathbb{R}^{n} for every given matrix A : $M_{k}=\sum_{i=0}^{k} L_{i}$.

Definition

We say that the adjoint algebra corresponding to this filtration,

$$
B(A)=\bigoplus_{k=0}^{n} B_{k}(A)=\bigoplus_{k=0}^{n} M_{k} / M_{k-1}
$$

is an upper Butcher algebra of matrix A.

Simplifying assumptions via subspaces

Thus,

1. $M_{p-1}=\mathbb{R}^{s+1}$ is the same as $C(2)$;
2. $M_{p-2}=\mathbb{R}^{s+1}$ is the same as $D(1)$;
3. $M_{p-3}=\mathbb{R}^{s+1}$???? (shall we name it $E(0)$???)

Theoretically, we can find further simplifying assumptions as $M_{p-3}=\mathbb{R}^{s+1}, \ldots$. However, it turns out that they are not true for many interesting methods.

That is why we suggest further modification of our idea.

Subspaces L_{k}^{\prime}

Thus, we change our construction a little (our new subspaces are denoted by primes).
Definition. For an arbitrary tree t, define the vector

$$
\Phi_{t}^{\prime}(A)=\delta(t) \Phi_{t}(A)-\underbrace{A e * \cdots * A e}_{d},
$$

where $d=w(t)$ is the weight of the tree, and $\delta(t)$ is some modification of the standard $\gamma(t)$.
Note that the order conditions imply that the last coordinate of this vector is zero for $d<p$.
Definition. For a given matrix A consider subspaces L_{k}^{\prime}, $k=0,1, \ldots$ generated by vectors $\Phi_{t}^{\prime}(A)$ for all trees t of weight k.

$$
\begin{aligned}
L_{0}^{\prime} & =L_{1}^{\prime}=0, \\
L_{2}^{\prime} & =<2 A^{2} e-A e * A e> \\
L_{3}^{\prime} & =<6 A^{3} e-A e * A e * A e, 3 A(A e * A e)-A e * A e * A e, \\
& 2 A^{2} e * A e-A e * A e * A e>
\end{aligned}
$$

Subspaces M_{k}^{\prime}

For given matrix A consider the filtration $0 \subset M_{2}^{\prime} \subset M_{3}^{\prime} \ldots$:

$$
\begin{aligned}
& M_{0}^{\prime}=0, \\
& M_{1}^{\prime}=0, \\
& M_{2}^{\prime}=L_{2}^{\prime}, \quad\left(\operatorname{dim} M_{2}^{\prime}=1\right) \\
& M_{3}^{\prime}=L_{2}^{\prime}+L_{3}^{\prime}, \\
& M_{4}^{\prime}=L_{2}^{\prime}+L_{3}^{\prime}+L_{4}^{\prime},
\end{aligned}
$$

This filtration corresponds to the multiplication, that is

$$
M_{i}^{\prime} * M_{j}^{\prime} \subset M_{i+j}^{\prime}, \quad A\left(M_{i}^{\prime}\right) \subset M_{i+1}^{\prime}
$$

Lower Butcher algebra of the matrix

Let A be an $n \times n$ lower triangular matrix with zero diagonal.
Consider subspaces $L_{k}^{\prime}=<\Phi_{t}^{\prime}(A)>$ of \mathbb{R}^{n} where t is a tree of weight k and filtration of the space \mathbb{R}^{n} for every given matrix A : $M_{k}=\sum_{i=0}^{k} L_{i}$.

Definition

We say that the adjoint algebra corresponding to this filtration,

$$
B^{\prime}(A)=\bigoplus_{k=0}^{n} B_{k}^{\prime}(A)=\bigoplus_{k=0}^{n} M_{k}^{\prime} / M_{k-1}^{\prime}
$$

is an lower Butcher algebra of matrix A.

New simplifying assumptions

We calculate the dimensions of the introduced subspaces $B_{k}^{\prime}=M_{k}^{\prime} / M_{k-1}^{\prime}$ for all known RK-methods:

Method, $\quad \mathrm{k}:$	0	1	2	3	4	5	6	7	8
$R K(\mathrm{p}=3, \mathrm{~s}=3):$	0	0	1	1	-	-	-	-	-
$R K(\mathrm{p}=4, \mathrm{~s}=4):$	0	0	1	1	1	-	-	-	-
$R K(\mathrm{p}=5, \mathrm{~s}=6):$	0	0	1	2	1	1	-	-	-
$R K(\mathrm{p}=6, \mathrm{~s}=7):$	0	0	1	1	2	1	1	-	-
$R K(\mathrm{p}=7, \mathrm{~s}=9):$	0	0	1	1	2	2	1	1	-
$R K(\mathrm{p}=8, \mathrm{~s}=11):$	0	0	1	1	2	2	2	1	1

Note that the sum of the elements in each row is $s-1$.
We suggest the next new simplifying assumption: $\operatorname{dim} B_{3}^{\prime}=1$. We see from the table that $\operatorname{RK}(p=5, s=6)$ will not satisfy this condition. However, for all known higher order RK methods it holds.

Vectors w_{k}

Now more detailed computations.
Definition
For $k \geq 2$ denote by w_{k} vector

$$
w_{k}=k A(\underbrace{A e * \cdots * A e}_{k-1})-\underbrace{A e * \cdots * A e}_{k} \in L_{k}^{\prime} .
$$

That is

$$
\begin{aligned}
w_{2} & =2 A^{2} e-A e * A e \\
w_{3} & =3 A(A e * A e)-A e * A e * A e \\
w_{4} & =4 A(A e * A e * A e)-A e * A e * A e * A e, \\
& \ldots,
\end{aligned}
$$

This vectors w_{k} allow us to define L_{k}^{\prime} recursively (we shall omit the details here, and show only the consequences).

Simplifying assumptions of level 3,4

We propose to call

1. $C(2)$ level 1 simplification;
2. $D(1)$ level 2 simplification.

Simplifying assumptions of level 3: $\operatorname{dim} B_{3}^{\prime}=1$, that is $\operatorname{dim} M_{3}^{\prime}=2$.
In other words, the dimension of subspace in \mathbb{R}^{s+1} generated by $w_{2}, w_{3}, A e * w_{2}, A w_{2}$ equals 2.

Simplifying assumptions of level 4: $\operatorname{dim} B_{4}^{\prime}=2$, that is $\operatorname{dim} M_{4}^{\prime}=4$.
In other words, the dimension of subspace in \mathbb{R}^{s+1} generated by $w_{2}, w_{3}, A e * w_{2}, A w_{2}, w_{4}, A e * w_{3}, A w_{3}, w_{2} * w_{2}$ equals 4.

Simplification of level 3

Now more detils on simplification of level 3.
The condition of the linear dependency of the generating vectors implies that everything can be expressed in terms of w_{2} and w_{3} :

$$
\begin{array}{ll}
d \cdot A w_{2} & =a_{32} c_{2}^{2}\left(c_{2} \cdot w_{2}-w_{3}\right), \\
d \cdot A e * w_{2} & =\left(3 c_{2}-2 c_{3}\right) c_{2}^{2} a_{32} \cdot w_{2}-\left(c_{2}-c_{3}\right)\left(2 a_{32} c_{2}-c_{3}^{2}\right) \cdot w_{3},
\end{array}
$$

where $d=a_{32} c_{2}^{2}+c_{3}^{2}\left(c_{2}-c_{3}\right)$.
If in addition, the simplifying assumption of level 2 holds and among all the b_{i}-s, only $b_{2}=0$, then we can simplify further:

$$
\begin{array}{ll}
A e * w_{2} & =c_{2} w_{2}, \\
A w_{2} & =\frac{c_{2}}{2 c_{3}}\left(-c_{2} w_{2}+w_{3}\right) .
\end{array}
$$

Conclusion

1. Usual computer algebra do not allow to find higher-order RK methods.
2. Introduction of upper and lower Butcher algebra allows a much better understanding the structure of the order conditions.
3. Using Butcher algebras opens the way to finding the RK methods of arbitrarily high order.
4. Learning of Butcher algebra of an arbitrary square matrix is an independent, interesting mathematical problem, even apart from the RK methods.

Thank you!!!!

