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What is Runge-Kutta methods

Let an initial value problem be specified as follows.

y ′ = f (t, y), t ∈ R, y ∈ Rn, y(t0) = y0

Now pick a step-size h > 0 and define

y1 = y0 + (k1 + 2k2 + 2k3 + k4)/6

where
k1 = hf (t0 , y0) ,

k2 = hf (t0 + h
2 , y0 + 1

2k1) ,

k3 = hf (t0 + h
2 , y0 + 1

2k2) ,
k4 = hf (t0 + h , y0 + k3) ,

Classical Runge-Kutta method is a fourth-order methods with four
stages, RK (4, 4).
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Butcher tableau

All coefficients can be combined into one table(Butcher tableau):

c2 a21
c3 a31 a32
c4 a41 a42 a43

b1 b2 b3 b4

where
c2 = a21 ,
c3 = a31 + a32 ,
c4 = a41 + a42 + a43 ,
1 = b1 + b2 + b3 + b4 .
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RK (4, 4) equations

Coefficients (aij , bj) must satisfy the equations (order conditions or
Butcher equations):

0) b1 + b2 + b3 + b4 = 1,
1) b2c2 + b3c3 + b4c4 = 1/2,
2) b3a32c2 + b4(a42c2 + a43c3) = 1/6,
3) b2c2

2 + b3c3
2 + b4c4

2 = 1/3,
4) b4a43a32c2 = 1/24,
5) b3c3a32c2 + b4c4(a42c2 + a43c3) = 1/8,
6) b2c3

2 + b3c3
3 + b4c3

4 = 1/4,
7) b3a32c2

2 + b4(a42c2
2 + a43c2

3 ) = 1/12,
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Extended matrix

For my purposes it is convenient to use an extended
(s + 1)×(s + 1)-matrix A of the RK (p, s)-method that is defined
as follows.

A =



0 0 0 0 . . . 0
a21 0 0 0 . . . 0
a31 a32 0 0 . . . 0

. . .
as1 as2 . . . as,s−1 0 0
b1 b2 . . . bs−1 bs 0


where as usual the first column can be expressed in terms of the
others:

ak1 = ck − ak2 − · · · − ak,k−1 ∀k = 2 . . . s .
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John Butcher-1963

For a long time, not only the solution, but also finding the order
conditions in general had a big problem. New approaches are
gradually accumulated and the breakthrough came in two articles:
J.C. Butcher. Coefficients for the study of runge-kutta integration
processes. J. Austral. Math. Soc., 3:185–201, 1963.
J.C. Butcher. On Runge-Kutta processes of high orderJ. Austral.
Math. Soc., 4:179–194, 1964.
They described the order conditions in general: one equation each
rooted tree.
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Methods of order 5

In 1964 J.Bucher find the 5-dimensional family of 6-stage methods
of order 5.
J. C. Butcher, On Runge-Kutta processes of high order, J. Austral.
Math. Soc. 4 (1964), 179–194.
In 1969 Cassity showed that the Butcher family is only a subvariety
of larger, 6-dimensional family.
C. R. Cassity, The complete solution of the fifth order Runge-Kutta
equations, SIAM J. Numer. Anal. 6 (1969), 432–436.
What do you mean “found”? This means that given a certain
algorithm, by which unfree variables are expressed in terms of free
ones.
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Methods of order 6

J. Butcher (1966) found the 4-dimensional family of 7-stages
methods of order 6.
S.I.Khashin was numerically found a large number of individual
methods of type RK (6, 7) and define local dimension solution
variety in these points. It turned out that many of the methods are
found not to contain in Butcher family.
Some analytic formulas (Maple-functions) was fond by D.Verner
and me:
http://math.ivanovo.ac.ru/dalgebra/Khashin/rk/sh rk.html
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Methods of order ≥ 7

J. Butcher found the 2-dimensional family of 9-stages methods of
order 7.
In the works of Curtis, Verner, Cooper, and some other authors
found some methods of family orders 7, 8 and even 10.
J.H. Verner. Refuge for Runge-Kutta Pairs,
http://people.math.sfu.ca/∼jverner/
P. Stone. Peter Stone’s Maple Worksheets.
http://www.peterstone.name/Maplepgs
Sharp P.W., Verner J.H., Generation of high-order interpolants for
explicit Runge-Kutta pairs, TOMS, 24, 1, 13-29. 1998.
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Trees
Following standard Butcher’s approach, we use trees. We recall
operations from graph theory.

Here t0 is a tree with only one vertex,
t1 = αt0 – adding a vertex and an edge to the root,
t2 = α2t0,
t4 = α(t2) = α3(t0). t0

q
t1
qa

t2
qaa

t4
q\a/a
\a

Multiplication of trees:
t3 = t1 · t1,
t5 = t1 · t2,
t7 = t1 · t1 · t1. t3

q\a /
a

t5
q\a /
aa

t7
q\a /
aa

So we have the following 8 trees of weight ≤ 3.

t0
q

t1
qa

t2
qaa

t3
q\a /
a

t4
q\a/a
\a

t5
q\a /
aa

t6
qa\
a

/
a

t7
q\a /
aa
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Trees semigroup

Definition
We denote the set of all non-isomorphic rooted trees as T .

Theorem
Every tree t ∈ T can be obtained from t0 by combination of
operations α and multiplication of trees.

So, T is a free semigroup, generated by all “one-leg“ trees.
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Function δ(t)

Definition
Let t ∈ T . Then δ(t) is the product of all orders (w(tv ) + 1),
where v denotes a vertex of t and v is not the root:

δ(t) =
∏

v 6=root

(w(tv ) + 1) .

where weight w(t) is a number of edges in the tree.

Theorem
The following properties hold:

1. δ(t0) = 1,

2. δ(t1 · t2) = δ(t1)δ(t2) for any t1, t2 ∈ T ,

3. δ(αt) = δ(t)(w(t) + 1) for any t ∈ T .
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Let e = (1, . . . , 1)t ∈ Rn and “∗“ – coordinate-wise multiplication
in Rn.
For a given (s + 1)×(s + 1)-matrix A we have a vectors Φt(A) :

Φ(t0) = e, δ(t0) = 1,
Φ(t1) = Ae, δ(t1) = 1,
Φ(t2) = A2e, δ(t2) = 2,
Φ(t3) = Ae ∗ Ae, δ(t3) = 1,
Φ(t4) = A3e, δ(t4) = 6,
Φ(t5) = Ae ∗ A2e, δ(t5) = 2,
Φ(t6) = A(Ae ∗ Ae), δ(t6) = 2,
Φ(t7) = Ae ∗ Ae ∗ Ae, δ(t7) = 1,

where e = (1, . . . , 1)t and “∗“ – coordinate-wise multiplication in
Rs+1.

t0
q

t1
qa

t2
qaa

t3
q\a /
a

t4
q\a/a
\a

t5
q\a /
aa

t6
qa\
a

/
a

t7
q\a /
aa
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Butcher equations

Theorem
Matrix A is a matrix of RK method of order p, if for each rooted
tree t of weight ≤ p the last coordinate of vector Φt(A) equals
1/δ(t).

(Φt(A), e ′) = 1/δ(t), where e ′ = (0, . . . , 0, 1).

We will consider this equations only of “one-leg“ trees. It is a very
large polynomial systems:

order 1 2 3 4 5 6 7 8 9 10

number of eqs 1 2 4 8 17 37 85 200 486 1205

min. number of stages : 4 6 7 9 11 13 ≤ 17
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Subspaces Lk and Mk
Consider subspaces generated by Φt(A) with trees of weight k :

Lk =< Φt(A) | w(t) = k > ⊂ Rs+1 .

For example,

L0 =< e > ,
L1 =< Ae > ,
L2 =< A2e, Ae ∗ Ae > ,
L3 =< A3e, A(Ae ∗ Ae), A2e ∗ Ae, Ae ∗ Ae ∗ Ae > ,

Consider a filtration in Rs+1: chain of subspaces 0 ⊂ M0 ⊂ M1 ⊂ M2 . . . :

M0 = L0 ,
M1 = L0 + L1 ,
M2 = L0 + L1 + L2 ,
M3 = L0 + L1 + L2 + L3 ,
. . .

Theorem This filtration corresponds to the multiplication, that is

Mi ∗Mj ⊂ Mi+j , A(Mi ) ⊂ Mi+1 .
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Butcher algebra of the matrix

Let A be an n×n lower triangular matrix with zero diagonal.
Consider subspaces Lk =< Φt(A) > of Rn where t is a tree of
weight k and filtration of the space Rn for every given matrix A:
Mk =

∑k
i=0 Li .

Definition
We say that the adjoint algebra corresponding to this filtration,

B(A) =
n⊕

k=0

Bk(A) =
n⊕

k=0

Mk/Mk−1

is an upper Butcher algebra of matrix A.

17 / 26



Preliminaries Known methods Butcher algebras New simplifying assumptions Conclusion

Simplifying assumptions via subspaces

Thus,

1. Mp−1 = Rs+1 is the same as C (2);

2. Mp−2 = Rs+1 is the same as D(1);

3. Mp−3 = Rs+1 ???? (shall we name it E (0)???)

Theoretically, we can find further simplifying assumptions as
Mp−3 = Rs+1, . . . . However, it turns out that they are not true for
many interesting methods.

That is why we suggest further modification of our idea.
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Subspaces L′k
Thus, we change our construction a little (our new subspaces are
denoted by primes).
Definition. For an arbitrary tree t, define the vector

Φ′t(A) = δ(t)Φt(A)− Ae ∗ · · · ∗ Ae︸ ︷︷ ︸
d

,

where d = w(t) is the weight of the tree, and δ(t) is some
modification of the standard γ(t).
Note that the order conditions imply that the last coordinate of
this vector is zero for d < p.
Definition. For a given matrix A consider subspaces L′k ,
k = 0, 1, . . . generated by vectors Φ′t(A) for all trees t of weight k .

L′0 = L′1 = 0 ,

L′2 =< 2A2e − Ae∗Ae > ,

L′3 =< 6A3e − Ae∗Ae∗Ae, 3A(Ae∗Ae)− Ae∗Ae∗Ae,

2A2e∗Ae − Ae∗Ae∗Ae >
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Subspaces M ′k

For given matrix A consider the filtration 0 ⊂ M ′2 ⊂ M ′3 . . . :

M ′0 = 0 ,
M ′1 = 0 ,
M ′2 = L′2 , (dim M ′2 = 1)
M ′3 = L′2 + L′3 ,
M ′4 = L′2 + L′3 + L′4 ,
. . .

This filtration corresponds to the multiplication, that is

M ′i ∗M ′j ⊂ M ′i+j , A(M ′i ) ⊂ M ′i+1 .
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Lower Butcher algebra of the matrix

Let A be an n×n lower triangular matrix with zero diagonal.
Consider subspaces L′k =< Φ′t(A) > of Rn where t is a tree of
weight k and filtration of the space Rn for every given matrix A:
Mk =

∑k
i=0 Li .

Definition
We say that the adjoint algebra corresponding to this filtration,

B ′(A) =
n⊕

k=0

B ′k(A) =
n⊕

k=0

M ′k/M ′k−1

is an lower Butcher algebra of matrix A.
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New simplifying assumptions

We calculate the dimensions of the introduced subspaces
B ′k = M ′k/M ′k−1 for all known RK-methods:

Method, k: 0 1 2 3 4 5 6 7 8

RK (p=3,s= 3) : 0 0 1 1 − − − − −
RK (p=4,s= 4) : 0 0 1 1 1 − − − −
RK (p=5,s= 6) : 0 0 1 2 1 1 − − −
RK (p=6,s= 7) : 0 0 1 1 2 1 1 − −
RK (p=7,s= 9) : 0 0 1 1 2 2 1 1 −
RK (p=8,s=11) : 0 0 1 1 2 2 2 1 1

Note that the sum of the elements in each row is s − 1.
We suggest the next new simplifying assumption: dim B ′3 = 1. We
see from the table that RK(p = 5, s = 6) will not satisfy this
condition. However, for all known higher order RK methods it
holds.
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Vectors wk

Now more detailed computations.

Definition
For k ≥ 2 denote by wk vector

wk = kA(Ae ∗ · · · ∗ Ae︸ ︷︷ ︸
k−1

)− Ae ∗ · · · ∗ Ae︸ ︷︷ ︸
k

∈ L′k .

That is

w2 = 2A2e − Ae ∗ Ae,
w3 = 3A(Ae ∗ Ae)− Ae ∗ Ae ∗ Ae,
w4 = 4A(Ae ∗ Ae ∗ Ae)− Ae ∗ Ae ∗ Ae ∗ Ae,

. . . ,

This vectors wk allow us to define L′k recursively (we shall omit the
details here, and show only the consequences).
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Simplifying assumptions of level 3, 4

We propose to call

1. C (2) level 1 simplification;

2. D(1) level 2 simplification.

Simplifying assumptions of level 3: dim B ′3 = 1, that is
dim M ′3 = 2.
In other words, the dimension of subspace in Rs+1 generated by
w2,w3, Ae ∗ w2, Aw2 equals 2.

Simplifying assumptions of level 4: dim B ′4 = 2, that is
dim M ′4 = 4.
In other words, the dimension of subspace in Rs+1 generated by
w2,w3, Ae ∗ w2, Aw2, w4, Ae∗w3, Aw3,w2 ∗ w2 equals 4.
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Simplification of level 3

Now more detils on simplification of level 3.
The condition of the linear dependency of the generating vectors
implies that everything can be expressed in terms of w2 and w3:

d · Aw2 = a32c2
2 (c2 · w2 − w3) ,

d · Ae ∗ w2 = (3c2 − 2c3)c2
2a32 · w2 − (c2 − c3)(2a32c2 − c2

3 ) · w3 ,

where d = a32c2
2 + c2

3 (c2 − c3).

If in addition, the simplifying assumption of level 2 holds and
among all the bi -s, only b2 = 0, then we can simplify further:

Ae ∗ w2 = c2w2 ,

Aw2 =
c2

2c3
(−c2w2 + w3) .
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Conclusion

1. Usual computer algebra do not allow to find higher-order RK
methods.

2. Introduction of upper and lower Butcher algebra allows a
much better understanding the structure of the order
conditions.

3. Using Butcher algebras opens the way to finding the RK
methods of arbitrarily high order.

4. Learning of Butcher algebra of an arbitrary square matrix is an
independent, interesting mathematical problem, even apart
from the RK methods.

Thank you!!!!
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