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Abstract

A new approach based on the introduction of new simplifying assumptions of a novel kind
is introduced. The approach is based on the construction of a graduated finite-dimensional
algebra for a given Butcher tableau. This approach allowed us to discover some new families of
Runge-Kutta (RK) methods of orders less than or equal to 8. Most of the methods constructed
have new features different from those of previously known methods. A new order 9 method has
been found having only 13 stages. For all of these families we have found representatives nu-
merically and introduced a method to find their local dimensions. Using numerical information
we additionally derive analytical solutions in some cases.

1 Introduction

In the beginning of 1960s, Butcher [3, 5, 4] suggested a convenient form for the systems of equations
(Butcher’s systems) defining Runge-Kutta (RK) methods. A good exposition can be found in [1, 9,
11].

The problem received overwhelming attention and many significant contributions were made
(e.g. [1, 7, 8, 13, 9, 12, 10, 6, 2] and many others). Most of the scientists approach the problem
symbolically, and indeed in many cases analytic solution have been found.

On the other hand,the numerical approach has not previously received much attention because in
the interesting cases the task is time computing and the result, that is finding of partial solutions of
Butcher’s systems is not useful enough. In the present paper we apply the direct numerical approach
which finds partial solutions of Butcher’s systems, and many of these new solutions do not belong
to any previously known family. Having a new partial (numerical) solution, we derive its properties
including the local dimension of the solution variety at this point. A special method is suggested for
computation this local dimension using numerical data only. Using this additional information we
impose some addition properties on the variables, which allow us to simplify the Butcher system in
this case and solve it analytically.
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Starting with the RK methods of order 8 and 9 the numerical approach fails, and we suggest a
new kind of simplifying assumptions basing on the construction of a graduated finite-dimensional
algebra for a Butcher tableau. These assumptions are reasonable because all known solutions obey
these new assumptions, and are useful because new solutions can be found. In other words, relative
to the older assumptions, the new assumptions lead to a smaller set of equations to be solved, in
a new (smaller) set of variables, and yet all previously known solutions are reproduced, with new
solutions now being accessible.

A particular benefit is the obtaining of a 13-staged RK method of order 9, while the previous
best known method of order 9 has 15 steps [13].

The method for finding the local dimensions of the solution varieties is not restricted to the
Butcher equations but can be used for any polynomial or analytical system of equations.

2 Preliminaries

The n-stage RK methods are defined by its Butcher tableau, which puts the coefficients of the method
in a table as follows:

c2 a21
c3 a31 a32

. . .
cn an1 an2 . . . an,n−1

b1 b2 . . . bn−1 bn

(1)

Butcher tableau determines a RK method [1, 9] of order p if and only if

n∑
j=1

bjΦtj(A) = (b,Φt(A)) = 1/γ(t) (2)

holds for each tree t of order ≤ p (Butcher equations or order conditions).
The next table shows the number of order conditions. One can see that the construction of higher

order RK methods is not an easy task.

order 1 2 3 4 5 6 7 8 9 10
number of equns 1 2 4 8 17 37 85 200 486 1205

minimum number of stages : 4 6 7 9 11 ≤ 15 ≤ 17

In the search for RK schemes of maximal order, Butcher derived relations between individual
equations. These simplifying assumptions may be applied to reduce further the number of equations.

Usually one uses one or two simplifying assumptions: first one (C(2), with cn = 1) and second one
(D(1), with b2 = 0). The table below shows the number of variables and equations for the following
cases:

• (none): without any simplifying assumptions;

• (1): with simplifying assumption C(2);

• (2): with simplifying assumptions C(2) and D(1).
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order/stages 4/4 5/6 6/7 7/9 8/11 9/13
(none): eqs/vars 8/10 17/21 37/28 85/45 200/66 486/91

(1):eqs/vars 4/6 9/15 20/21 48/36 115/55 286/78
(2):eqs/vars 6/11 13/16 32/29 79/46 202/67

3 Our Approach

3.1 Numerical Solution

Given a Butcher system F (X) = 0 in vector notation with hundreds of equations and dozens of
variables, we use Newton method for solution.

Let n-th step of Newton method have linear equations

A · dX = b ,

where A = DF = (∂fi/∂xj) and b = −F (Xn), where fi is the i-th equation, and xj is the j-th variable
of the Butcher system, and Xn is the current approximation for solution X = (x1, . . . ). Since the
system is not square, we apply regularization method of Tikhonov [14],

(AtA+ λE) ∗ dX = Atb

for some small λ, where E is the identical matrix, and At is the transpose of matrix A.
Experimental Observations. Our computations show that

1. Solutions of Butcher systems are degenerate for order p larger than 6. Recall that a point of a
variety is called degenerate if all partial derivatives of the equations of the system are zero at
this point.

2. In the case of degenerate solution first-order approximation formulae for the numerical differen-
tiation gives better convergence than those of second-order. Moreover, this happens in absolute
majority of the cases. It is a challenge to prove this analytically.

3. Choosing numbers from 0 to 1 as initial guess for all the variables so that the the length of
vector X sufficiently small improves convergency of the method.

4. Convergence improves if we choose the epsilon in the approximation formulae for the numerical
differentiation from the interval from 10−7 to 10−9.

5. For better convergency it is essential to change parameter λ of Tikhonov regularization method
dynamically, that is to decrease its value from 10−2 to 10−12 as we approach to the solution.

Owing to the degeneracy of the solutions of the Butcher systems of orders larger than 6, Newton
method leads to no result. However, using experimental facts described above Newton iterations
converge after 10000− 20000 iterations, which takes several hours on average computer.

Our implementation language is Pascal.
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3.2 Local Dimensions

Let v be a solution of a Butcher system, and v+ vi are K ≈ 200 solutions in its small neighborhood.
Then v+vi solutions belong approximately to the tangent subspace to the variety of solutions at the
point v. In our case all the solutions are numerical, so v+vi solutions belong even more approximately
to the tangent subspace.

Theorem below takes into account these two noise problems and computes the dimension of the
tangent space.

Theorem 3.1. Let v be the point on a smooth manifold V ⊂ Rn of dimension d, and wi = v+vi, i =
1, . . . K be some points on V in ε-vicinity of v. Consider the non-negative square form

q(X) =

K∑
i=1

(X, vi)
2

ε2
.

in Rn and let µi, i = 1, . . . , K be its eigenvalues. Let C(δ, ε) be the number of the µi values which
are greater than δ. Then there exists ε0 > 0 such that for any δ > 0 and for any ε < ε0, C(δ, ε) ≤ d.

Proof. Let L be the tangent vector subspace for manifold V at the point v and L′ be its orthogonal
complement, L ⊕ L′ = Rn and vi = ui + wi, ui ∈ L, wi ∈ L′. Then there exist ε0 > 0 and constant
C0, such that for any δ > 0 and for any ε < ε0,

|wi| < C0 · ε · |vi| .

Therefore, we have
q(w) < C0 ·K · ε · |w|, ∀w ∈ L′ .

Therefore, all eigenvalues of the restriction of the square form q(X) on the subspace L′ are less than
C0 ·K ·ε and the number of eigenvalues of the initial square form q(X) that are greater than C0 ·K ·ε
is not greater than d = dimL.

Therefore, if we find the eigenvalues µi (using Jacobi rotations method) of the non-negative square
form q(X) and count the number of those of them that are greater than ε, then we get a lower bound
for the local dimension of the solution family.

Remark 3.2. In fact, it is not difficult to choose vi vectors in such a way that that lower bound would
be equal to the local dimension: one should make sure that the projections of all vi vectors together
generate the tangent space L.

Example 3.3. If the eigenvalues values are

1, 0.85, 0.77, 1.1× 10−9, . . .

then one may assume that the local dimension of this variety at the point v equals 3. If

1, 0.68, 0.48, 0.40, 0.40, 0.29, 9.3 · 10−10, . . . ,

then the local dimension is equal to 6.
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3.3 Filtrated Simplifying Assumptions

We suggest to rewrite Butcher equations as follows.
First of all, we suggest to consider (n+ 1)× (n+ 1) matrix Ã, which consists of Butcher tableau

A with the extra row at the bottom, consisting of bi (1), and with extra zero-column on the right to

make the new matrix square. Correspondingly, we have new vectors Φt(Ã).
Let L = Rn+1 with coordinate-wise multiplication (“∗”), and e = (1, . . . , 1), en+1 = (0, . . . , 0︸ ︷︷ ︸

n

, 1).

Consider subspaces Lk =< Φt(Ã)|t is a tree of weight k >⊂ L, that is

L0 =< e > ,

L1 =< Ãe > ,

L2 =< Ã2e, Ãe ∗ Ãe > ,

L3 =< Ã3e, Ã2(Ãe ∗ Ãe), Ã(Ãe ∗ Ãe ∗ Ãe), Ã(Ã2e ∗ Ãe) > ,
. . .

Then the Butcher equations can be written as

(Ãv, en+1) =
(v, en+1)

k + 1
, ∀v ∈ Lk .

Consider the following filtration of the space L for every given matrix Ã:

M0 = L0 ,
M1 = L0 + L1 ,
M2 = L0 + L1 + L2 ,
M3 = L0 + L1 + L2 + L3 ,
. . .

It follows from the Butcher equations that, the filtration corresponds to the multiplication, that is

Mi ∗Mj ⊂Mi+j, Ã(Mi) ⊂Mi+1 .

Definition 3.4. We say that the adjoint algebra with respect to this filtration,

B(A) =
n⊕

k=0

Bk(Ã) =
n⊕

k=0

Mk/Mk−1

is an upper Butcher algebra.

Now, consider L′k = Lk∩ < en+1 >
⊥, where L′ =< en+1 >

⊥ is the subspace of vectors that have
the last coordinate equaled to zero. Then

L′0 = 0 ,
L′1 = 0 ,

L′2 =< Ã2e− 1
2
Ãe ∗ Ãe > ,

. . .
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Again we consider a filtration of the space L′:

M ′
0 = L′0 ,

M ′
1 = L′0 + L′1 ,

M ′
2 = L′0 + L′1 + L′2 ,

M ′
3 = L′0 + L′1 + L′2 + L′3 ,

. . .

Definition 3.5. We say that the adjoint algebra with respect to this filtration,

B′(Ã) =
n⊕

k=0

B′k(Ã) =
n⊕

k=0

M ′
k/M

′
k−1

is a lower Butcher algebra.

By construction, both algebras are commutative, associative, graduated, and finite dimensional.
By construction, the 0-th and 1-st components of “lower” Butcher algebra have dimension zero,

and the 2-nd components have dimension one.

Definition 3.6. We call the restrictions on the dimensions of the 3-rd and the 4-th components of
the lower Butcher algebra filtrated simplifying assumptions.

Remark 3.7. The dimension of the subspace B′3 equals to (dimM ′
3 − dimM ′

2). Since the subspaces
L′2 and L′3 are generated by one and four vectors, correspondingly, the restriction dimB′3 = 1 means
that dimM ′

3 = 2, that is four vectors generates just two-dimensional subspace.

We use the filtrated simplifying assumptions together with the classical ones (C(2) and D(1)).
Importantly, the filtrated simplifying assumptions hold for all known RK methods, that is for all
known solutions of Butcher systems, which means that using these new assumptions we do not lose
at least known solutions. On the other hand, the new simplifying assumption significantly reduce
the number of equations in Butcher systems of high orders.

Remark 3.8. dimB′3 = 1 holds for all known methods of orders from 1 to 8 excluding order 5. For
known methods of order 5 we always have dimB′3 = 2. Also for all known method either dimB′4 = 1,
or dimB′4 = 2 holds.

Example 3.9. Consider the following family of 7-stage method of order 6 found by Butcher (we
mention this family as 1. in Subsec. 4.1). The dimensions of the subspaces mentioned above are as
follows.

i : 0 1 2 3 4 5 6
dim(Mi) : 1 2 4 6 8 8 8
dim(Bi) : 1 1 2 2 2 0 0
dim(M ′

i) : 0 0 1 2 4 5 6
dim(B′i) : 0 0 1 1 2 1 1
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Example 3.10. If we use only one assumption dimB′3 = 1, then the number of equations decreases
relatively to the order of a RK method as follows:

order usual simpl.assump. with dimB′3 = 1
4 3 3
5 6 5
6 13 10
7 32 23
8 79 54
9 202 133

3.4 Useful Proposition

The following result turned out to be useful for computations above. Up to our knowledge it has not
appeared before in the literature.

Proposition 3.11. . Given a Butcher tableau by its values (aij, bi, ci), which defines a RK method
of some order satisfying two (classical) simplifying assumptions C(2) and D(1). Consider a new
Butcher tableau, where c2 is arbitrary and nonzero,

ai2 = (c2i /2− ai3c3 − · · · − ai,n−2cn−2)/c2 ,
ai1 = ci − ai2 − · · · − ai,i−1 ,

.

and the rest of aij, bi, ci values remain unchanged. Then this tableau defines a RK method of the
same order.

In other words, given a RK method, one can obtain a 1-dimensional family of RK methods
parameterized by c2 6= 0.

Proof. Using 1st and 2nd simplifying assumption, we can express coefficients ai1, ai2 through ci, bi
and rest aij. After that, all the remaining equations will not depend on c2.

Corollary. For the further investigations of such methods one can simply put c2 = 1.

4 Results

4.1 Methods of order 6

Consider Butcher system of order 6. Butcher [1] has found a family of 7-stages solutions of order 6.
He has also proved that solutions with less number of stages are not possible. The parameters of the
Butcher system in the 7-stages case are as follows: 37 equations and 28 variables, when we do not use
simplifying assumptions, 20 equations and 21 variables if we use one simplifying assumption C(2),
and 13 equations and 16 variables if we use two simplifying assumptions (both C(2) and D(1)).

Using our approach we discovered the following 7-stages solutions families. Since the families are
large, it is convenient to use the major property (we shall call it “key property”) of the family to
distinguish them from each other.

1. Family with the key property b2 = 0, in fact this case is the case with two simplifying
assumptions. This family is exactly the family found by Butcher (dim = 4, and c2, c3, c5, c6 are free
variables).
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2. New family with the key property b2 6= 0 (so, D(1) not hold), b1 = b7 = 1/12, a61 = 1/6.
Local dimension is 4. We can find this solution family also analytically.

Example 4.1. Below is one representative of the family with the key property b2 6= 0, b1 = b7 =
1/12, a71 = 1/6. Notations a(i, j) = aij, b(i) = bi are used.

a(2, 1) = 0.092546683747426861;
a(3, 1) = −2.691723487894211920;
a(3, 2) = 3.498440208912323260;
a(4, 1) = −0.253228673413545159;
a(4, 2) = 0.486946470506554487;
a(4, 3) = −0.032589538034097808;
a(5, 1) = 1.266099168769624020;
a(5, 2) = −1.813678883893583040;
a(5, 3) = 0.100690134574407749;
a(5, 4) = 0.857476050925974915;
a(6, 1) = −1.711411739321930800;
a(6, 2) = 2.383574928383134820;
a(6, 3) = 0.014583794759490532;
a(6, 4) = −0.157873981349818600;

a(6, 5) = 0.252734125810753910;
a(7, 1) = 0.166666666666661427;
a(7, 2) = −1.087161772135447480;
a(7, 3) = −1.439658909532307060;
a(7, 4) = 2.115682066785066460;
a(7, 5) = −0.980534445595906839;
a(7, 6) = 2.225006393811933490;
b(1) = 0.083333333333333245;
b(2) = −0.047019299666198284;
b(3) = −0.488931671883268965;
b(4) = 0.294862881206967411;
b(5) = 0.225413862094639929;
b(6) = 0.849007561581193328;
b(7) = 0.083333333333333336;

3. New family with the key property a62 = 0, b2 6= 0 (so, D(1) not hold). The local dimension is
4. We assume that such can be found analytically also.

Example 4.2. Below is one representative of the family with the key property a62 = 0, b2 6= 0.
Notations a(i, j) = aij, b(i) = bi are used.

a(2, 1) = 0.84232731875896394;
a(3, 1) = 0.22176793098704824;
a(3, 2) = 0.04097942043558803;
a(4, 1) = −1.17706918659920457;
a(4, 2) = −0.46785430863828377;
a(4, 3) = 2.28880313771194906;
a(5, 1) = 1.99620306265929484;
a(5, 2) = 0.72108861202663995;
a(5, 3) = −2.48269997856082245;
a(5, 4) = 0.55969720790019506;
a(6, 1) = 0.81679069139657866;
a(6, 2) = 0.00000000000000000;
a(6, 3) = 0.06446645111760932;
a(6, 4) = −0.09296726553596899;

a(6, 5) = 0.05403744178074496;
a(7, 1) = −1.37990563691314763;
a(7, 2) = −1.66316707279261268;
a(7, 3) = 2.47436677928874809;
a(7, 4) = 0.30847520796140411;
a(7, 5) = 0.19463441420057583;
a(7, 6) = 1.06559630825503227;
b(1) = 0.07973197393356595;
b(2) = −0.50263462295926127;
b(3) = 0.39217619545543645;
b(4) = 0.25131510370831655;
b(5) = 0.20240358195781663;
b(6) = 0.50263462295926126;
b(7) = 0.07437314494486442;

4. Some other families are possible as we found some individual solutions that do not belong to
any of the families above. We have not investigate them enough to derive their key properties.
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4.2 Methods of order 7, 9 stages

Consider Butcher system of order 7. Butcher [1] has found a family of 9-stages solutions of order 7.
He has also proved that solutions with less number of stages are not possible. The parameters of
the Butcher system in the 9-stages case are as follows: 85 equations and 45 variables, when we do
not use simplifying assumptions, 48 equations and 36 variables if we use one simplifying assumption,
and 32 equations and 29 variables if we use two simplifying assumptions (both C(2) and D(1)).

1. Family with the key property b2 = 0, in fact this case is the case with two simplifying
assumptions. This family is exactly the family found by Butcher (dim = 4, and c4, c5, c6, c7 are free
variables).

2. A new family with unknown key property. Below is a representative of such family:

a(2, 1) = 0.055709745557893838;
a(3, 1) = 0.026263635087658255;
a(3, 2) = 0.042761323341521044;
a(4, 1) = 0.180713934065073522;
a(4, 2) = −1.724630252644998760;
a(4, 3) = 1.773392326210328340;
a(5, 1) = 0.122184739594819391;
a(5, 2) = −0.476495863566640026;
a(5, 3) = 0.470646779056013970;
a(5, 4) = 0.218727173747420283;
a(6, 1) = −0.668326023395610138;
a(6, 2) = 0.798848097403175316;
a(6, 3) = 0.567530742143598450;
a(6, 4) = −1.074052801061825440;
a(6, 5) = 0.907660014000541363;
a(7, 1) = −0.667425091647899129;
a(7, 2) = 0.289845464918453625;
a(7, 3) = 0.969502991873638334;
a(7, 4) = −0.244508963214403731;
a(7, 5) = −0.211390924656335116;
a(7, 6) = 0.619876986535953368;
a(8, 1) = −1.252873635170588490;
a(8, 2) = 0.813220953162738650;

a(8, 3) = 1.488453166149889360;
a(8, 4) = −1.124712130835941090;
a(8, 5) = 0.232807907805008520;
a(8, 6) = 0.589620688908153016;
a(8, 7) = −0.065896980303874902;
a(9, 1) = 0.576596684335809870;
a(9, 2) = −0.038206758304919255;
a(9, 3) = −0.543418436743487204;
a(9, 4) = −0.650089629457115554;
a(9, 5) = 1.515186292771789430;
a(9, 6) = 0.357327203429111682;
a(9, 7) = 1.848052699961051090;
a(9, 8) = −2.065448055992240060;
b(1) = −0.021131703541562841;
b(2) = 0.000000000000000000;
b(3) = 0.218257837154959567;
b(4) = −0.011716324536766582;
b(5) = 0.246207518407523748;
b(6) = 0.319797128012205456;
b(7) = 0.601609315645574299;
b(8) = −0.417596709342784309;
b(9) = 0.064572938200850633;

The local dimension of solution family at this point is equal to 6.
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3. A new family of dimension 8. Below is a representative of such family:

a(2, 1) = 0.034363715721150246;
a(3, 1) = 0.011408906068230086;
a(3, 2) = 0.042873648688569631;
a(4, 1) = 0.093957708054522383;
a(4, 2) = −0.287918426922017676;
a(4, 3) = 0.313174533344502095;
a(5, 1) = 0.529064287945578277;
a(5, 2) = −0.314579863958881281;
a(5, 3) = −0.685910969958008961;
a(5, 4) = 0.765359510917423582;
a(6, 1) = −0.276850654629649011;
a(6, 2) = 0.054653953415982125;
a(6, 3) = 0.711337439351539684;
a(6, 4) = −0.381649949076486322;
a(6, 5) = 0.301303725620202506;
a(7, 1) = −2.116797922601723170;
a(7, 2) = 0.373069905871642721;
a(7, 3) = 3.102068941425127280;
a(7, 4) = −0.329903697109250135;
a(7, 5) = −2.119261163321491940;
a(7, 6) = 1.810866965331287640;
a(8, 1) = −0.204401722537450190;
a(8, 2) = 0.041954598532237562;

a(8, 3) = 0.199119740705427742;
a(8, 4) = 0.421107413657664193;
a(8, 5) = −0.542703355965776147;
a(8, 6) = 0.712341382801249113;
a(8, 7) = 0.149159777373627983;
a(9, 1) = −0.313143378191429612;
a(9, 2) = 0.000705719707173451;
a(9, 3) = 0.993996434424775352;
a(9, 4) = −0.579823368233022578;
a(9, 5) = −0.138878024906600228;
a(9, 6) = 0.860606821512522765;
a(9, 7) = −1.186131874156395390;
a(9, 8) = 1.362667669842976240;
b(1) = −0.044160962796119653;
b(2) = 0.000000000000000000;
b(3) = 0.208220627606838437;
b(4) = 0.038270672182914916;
b(5) = 0.034978734936192145;
b(6) = 0.370718295634355222;
b(7) = −0.063318023219908099;
b(8) = 0.391156820405265850;
b(9) = 0.064133835250461204;

4.3 Methods of Order 8, 11 stages

Consider Butcher system of order 8. Verner [13] has found a family of 11-stages solutions of order 8.
Therefore, it is enough to have 11 stages in this case and the parameters of the Butcher system in this
case are as follows: 200 equations and 66 variables, when we do not use simplifying assumptions, 115
equations and 55 variables if we use one simplifying assumption, and 79 equations and 46 variables
if we use two simplifying assumptions. Using our approach we discovered four 11-stages solutions
families named by their following key properties:

• case b2 = a11,2 = 0, local dimension is 7 (dim = 7);

• case b2 = b3 = 0, dim = 7;

• case b2 = b3 = a11,2 = a10,2 = a9,2 = a8,2 = a7,2 = a6,2 = a5,2 = a4,2 = 0, dim = 9;

• case b2 = b3 = b4 = a11,2 = a10,2 = a9,2 = a8,2 = a7,2 = a6,2 = a5,2 = 0 , dim = 7;

4.4 Methods of Order 9, 13 stages

Using filtrated simplifying assumptions, 13-stages RK methods of order 9 has been obtained (at the
moment numerically only). In comparison Verner [13] has described a 15-stage method of order 9.
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b(1) = 0.03864998346208471;
b(2) = 0.00000000000000000;
b(3) = 0.00006697474166654;
b(4) = −0.00644462489124065;
b(5) = −0.13834186387360676;
b(6) = 0.45808280422265741;
b(7) = 0.17220783318423803;
b(8) = 0.30231913753516575;
b(9) = 0.01123452128011847;
b(10) = −0.32225389004297118;
b(11) = 0.34725529781658727;
b(12) = 0.10909525391742731;
b(13) = 0.02812857264787309;

c(2) = 1.23456789012345679;
c(3) = 0.83093125079368057;
c(4) = 0.25307939689146609;
c(5) = 0.73978526602389008;
c(6) = 0.32121210081087191;
c(7) = 0.89708311688417826;
c(8) = 0.14772935943031283;
c(9) = 0.24771823716447115;
c(10) = 0.24771823716447103;
c(11) = 0.70886696164310943;
c(12) = 0.55354855354899890;
c(13) = 1.00000000000000000;
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a(2, 1) = 1.23456789012345679;
a(3, 1) = 0.55130031714105422;
a(3, 2) = 0.27963093365262635;
a(4, 1) = 0.24466518387153281;
a(4, 2) = 0.06201854732004206;
a(4, 3) = −0.05360433430010878;
a(5, 1) = −0.00530803298883925;
a(5, 2) = 0.01122706141068128;
a(5, 3) = 0.12815417149486828;
a(5, 4) = 0.60571206610717977;
a(6, 1) = 0.20385530723008664;
a(6, 2) = 0.00136346637020209;
a(6, 3) = −0.33639699411752137;
a(6, 4) = 0.01077366106275497;
a(6, 5) = 0.44161666026534959;
a(7, 1) = 0.20326619346351716;
a(7, 2) = 0.00030757434940501;
a(7, 3) = −0.22597306215359036;
a(7, 4) = −0.32538442851325729;
a(7, 5) = 0.65042205710933842;
a(7, 6) = 0.59444478262876532;
a(8, 1) = 0.13299848113276506;
a(8, 2) = 0.00029546140345323;
a(8, 3) = −0.16156305306080680;
a(8, 4) = 0.01653216363090123;
a(8, 5) = 0.21249028701914083;
a(8, 6) = −0.05379813867195099;
a(8, 7) = 0.00077415797681026;
a(9, 1) = 0.39384668082978243;
a(9, 2) = 0.04642114869757957;
a(9, 3) = −0.43327524322219219;
a(9, 4) = −0.09788311725633047;
a(9, 5) = 0.51870168682340150;
a(9, 6) = 0.02295547927552810;
a(9, 7) = −0.00392203324977779;
a(9, 8) = −0.19912636473352000;
a(10, 1) = 0.32543103357747712;
a(10, 2) = 0.00199180356077018;
a(10, 3) = −0.57464330053639332;

a(10, 4) = −0.04610490029804602;
a(10, 5) = 0.75253043498499616;
a(10, 6) = −0.10441616111328677;
a(10, 7) = 0.00147329075932362;
a(10, 8) = −0.19778083926479465;
a(10, 9) = 0.08923687549442470;
a(11, 1) = −0.06306037528545690;
a(11, 2) = 0.00538294453321659;
a(11, 3) = 0.16035657574223180;
a(11, 4) = 0.02340627199559249;
a(11, 5) = −0.08789296531510297;
a(11, 6) = 0.60403792745181988;
a(11, 7) = 0.00076880185958083;
a(11, 8) = 0.40581575264524803;
a(11, 9) = 0.55229114187524298;
a(11, 10) = −0.89223911385926331;
a(12, 1) = 0.00916707519205579;
a(12, 2) = −0.00533157131032308;
a(12, 3) = 0.06085378313059202;
a(12, 4) = −0.22364683008555630;
a(12, 5) = −0.88422193839572302;
a(12, 6) = 0.87059878101090858;
a(12, 7) = 0.03359047564465317;
a(12, 8) = 0.59052956197703567;
a(12, 9) = −0.18969593856262461;
a(12, 10) = −0.57064404757925808;
a(12, 11) = 0.86234920252723876;
a(13, 1) = −0.27709947154251589;
a(13, 2) = 0.00000000000000000;
a(13, 3) = 0.59063198402216033;
a(13, 4) = 4.53614500824935334;
a(13, 5) = −1.80880252398515069;
a(13, 6) = −4.04580607620794161;
a(13, 7) = 0.50042903704327684;
a(13, 8) = −0.32658866525372163;
a(13, 9) = −4.75966712951217952;
a(13, 10) = 4.60967549313617009;
a(13, 11) = 0.24954286915090418;
a(13, 12) = 1.73153947489964456;
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