
Butcher Algebras for Butcher Systems ∗

Sergey Khashin
Department of Mathematics, Ivanovo State University, Ivanovo, Russia

khash2@gmail.com

Preliminary version

2012.08.01

Abstract

We investigate rigorously the properties of the Butcher upper and lower algebras introduced
earlier. This investigation provides a new representation of the order conditions which leads to a
new approach to simplifying conditions and a way to obtain new methods of high orders explicitly.

1 Introduction

The Runge-Kutta (RK) methods are one of the most popular numerical methods for the solution of
ordinary differential equations.

Initially introduced in the beginning of 20th century, the methods have been defined by a system of
equations, which have been hard to obtain explicitly. In the beginning of 1960s, Butcher [Butcher(1963),
Butcher(1964a), Butcher(1964b)] suggested a convenient form (Butcher’s systems) for these systems of
equations, the idea which became a foundation of the modern RK theory. A good exposition can be
found in [Butcher(2008), Butcher(2011), Hairer(2000)].

Researchers working on RK methods have shown dynamically changing approaches to solve the order
conditions in systematic ways over a number of decades, for example, [Albrecht(1985), Butcher(2008),
Hairer(2000), Verner(1996), Feagin (2007)]. Algorithms have been coded to compute coefficients of vari-
ous methods by allowing arbitrary parameters to be selected for the optimization of accuracy and stability
properties. Several classifications of designs for solutions of RK methods and pairs of methods are known,
and these classifications also identify differences between families of methods. For example, a 17 stage
method of order 10 was developed by Hairer in 1978 [Hairer(1978)], and more recent research by Terry
Feagin [Feagin (2007)] on pairs of methods of orders up to 14 indicate that the construction of high order
explicit RK methods are of interest.

In [Khashin(2009)] using the filtrations and the graded algebras constructions, we introduced the idea
of Butcher upper and lower algebras. These structures have not been artificially imposed on RK, but
rather have been “noticed”, in other words these are natural structures for RK methods.

In the present paper we prove some important properties for the constructed Butcher algebras. The
most important result contains in Theorems 5.6 and 5.7.

In particular, Theorems 5.6 and 5.7 imply a way to significantly reduce the number of equations.
Namely, condition (5) means that RK method exists if certain linear equality holds for every vector in
certain vector sub-space, which implies that this linear equality must hold for each of the basis vectors

∗(Preliminary version)

1



from this vector sub-space. Therefore, the total number of equations to solve will be near to the dimension
of the subspace.

The previous paper [Khashin(2009)] indicates that dimensions of some sub-spaces are less than the
number of stages for displayed methods from orders 6 to 9.

The paper is organized as follows. Sec. 2 contains basic notions on RK methods and tree theory.
Sec. 3 describes the first preliminary modifications of the Butcher equations. In Sec. 4 we outline the
construction of Butcher lower and upper algebras and other algebraic constructions already presented
in [Khashin(2009)]. Sec. 5 contains the main contribution of the present paper.

2 Preliminaries

Let an s-stage RK methods be defined by its Butcher tableau

c2 a21
c3 a31 a32

. . .
cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

(1)

Then the corresponding order conditions (Butcher equations) for a RK method [Butcher(2008),
Hairer(2000)] of order p are as follows.

s∑
j=1

bjΦtj(A) = bTΦt(A) = (b,Φt(A)) = 1/γ(t) , (2)

where t is an arbitrary tree of order ρ(t) ≤ p, and Φt(A) is a homogeneous polynomial of degree (w(t)−1)
of coefficients from the matrix A.

Below we introduce several standard for Rooted Trees theory definitions and constructions.

Definition 2.1. We denote the set of all non-isomorphic rooted trees as T .

Definition 2.2. The product of two trees t1 and t2, t1 · t2 is the tree obtained by superimposing the
roots of these trees. In other words, the root of tree t1 and the root of tree t2 become one point, one
root. The set T is a commutative semigroup with respect to this operation.

Let t0 be the tree consisting of only one vertex. Then for every tree t we have:

t · t0 = t0 · t = t .

So, semigroup T has a identity, t0. Semigroup T is generated by all one-legged trees, that is by those
elements of T that have only one edge coming out from the root.

Definition 2.3. The following operation, α acts on semigroup T : for every t ∈ T

α : t 7→ αt ,

where αt is the tree obtained from the tree t by adding an vertex “under” the root and this new tree has
this newly added vertex as the root.

The tree αt is always one-legged.

Theorem 2.4. Every tree t ∈ T can be obtained from t0 by combination of operations α and multiplica-
tion of trees.

2



Proof. If t has multiple legs then t is the product of the corresponding one-legged trees. If t has only one
leg, then t is the result of α-operation applied to the tree of weight (w(t)− 1) obtained when the root of
t is deleted.

Definition 2.5. Let t ∈ T . The weight w(t) of t is the number of edges in tree t.

The following statements follow from Definitions 2 and 4.

Proposition 2.6. The following properties hold:

1. w(t0) = 0,

2. w(t1 · t2) = w(t1) + w(t2) for any t1, t2 ∈ T ,

3. w(αt) = w(t) + 1 for any t ∈ T .

Definition 2.7. If t is a rooted tree with the root at the bottom and v is a vertex of t, then we denote
by tv the subtree of the tree t which lays over the vertex v and has v as the root.

3 Preliminary Modifications of Butcher Equations

Definition 3.1. Let t ∈ T . Then δ(t) is the product of all orders (w(tv) + 1), where v denotes a vertex
of t and v is not the root:

δ(t) =
∏
v 6=root

(w(tv) + 1) .

This definition is a modification of the Butcher’s γ(t) [Butcher(2008)]. δ(t) will be more convenient
for our purposes. One can see that

γ(t) = δ(t)(w(t) + 1) .

The main advantage of δ(t) over γ(t) is that it is a multiplicative function:

Proposition 3.2. The following properties hold.

1. δ(t0) = 1,

2. δ(t1 · t2) = δ(t1)δ(t2) for any t1, t2 ∈ T ,

3. δ(αt) = δ(t)(w(t) + 1) for any t ∈ T .

The proof of this proposition follows from Definitions 4 and 6.
Consider a vector space Rs, where vectors are considered as columns. Let ∗ be the coordinate-wise

multiplication in Rs. Let

e =


1
...
1
1

 , d =


0
...
0
1

 .

Definition 3.3 (Butcher). Let t ∈ T and A be a square s× s matrix. Define vector Φt(A) recursively.

1. Φt0(A) = e for identity tree t0,

2. Φαt(A) = A(Φt(A)) for every t ∈ T ,

3. Φt1·t2(A) = Φt1(A) ∗ Φt2(A) for the product of two trees t1 and t2.

3



Let A and b = (b1, . . . bs) be the matrix and the row-vector defining an s-stage RK method of order
p,

A =


0 0 . . . 0
a21 0 . . . 0

. . .
as1 as2 . . . 0

 .

As in [Khashin(2009)] we consider instead of the pair (A, b), the extended matrix Ã, which is matrix A
with an extra row b at the bottom, and an extra column of zeros on the right to make it square.

Theorem 3.4. [Butcher(1963), Butcher(1964b)] A method is of order p if and only if

(b,Φt(A)) =
1

γ(t)

for all trees t with 0 ≤ w(t) < p.

Let us rewrite Butcher equations in a different form using the notion of the extended matrix, Ã.

Theorem 3.5. An extended matrix Ã defines a RK method of order p if and only if

(d,Φt(Ã)) =
1

δ(t)
(3)

holds for every tree t of the weight less or equal to p. Moreover, it is enough to consider one-legged trees
only.

Proof. Since sum of the coordinates of vector b ∗Φt(A) equals to the scalar product (d, Ã ·Φt(Ã)), where
“∗“ denotes coordinate-wise multiplication of vectors, then Butcher equations can be written in the form

(d, Ã · Φt(Ã)) = 1/γ(t) (4)

for all trees of weight w(t), 0 ≤ w(t) < p.
Let t be an arbitrary tree of the weight less than p, then t1 = αt is an one-legged tree of the weight

less or equal to p. Since (d, Ã ·Φt(Ã)) = (d,Φαt(Ã)) and δ(αt) = γ(t), then equation (4) can be rewritten
in the form

(d,Φt1(Ã)) = 1/δ(t1)

for each one-legged tree t1 of the weight less than or equal to p.
The equations in this form are multiplicative, because Φt2·t3(Ã) = Φt2(Ã) ∗ Φt3(Ã) and δt2·t3 = δt2δt3 ,

then the equations for multi-legged trees are the consequences of those for one-legged equations.

4 Butcher algebras

In this section we recall some algebraic constructions introduced in [Khashin(2009)].
Let A be an arbitrary n×n lower triangular matrix with zero diagonal. Consider subspaces Lk =<

Φt(A) > of Rn where t is a tree of weight k. And filtration 1 of the space Rn for every given matrix A:
Mk =

∑k
i=0 Li.

1The definitions of filtrations and of adjoint graded algebras are standard and can be found for example
in [Lang, Serge (2002)], p.172, [Levin A.(2008)], p.37.

4



Definition 4.1. We say that the adjoint algebra corresponding to this filtration,

B(A) =
n⊕
k=0

Bk(A) =
n⊕
k=0

Mk/Mk−1

is an upper Butcher algebra of matrix A.

Definition 4.2. For an arbitrary tree t denote by Φ′(t)(A) vector

Φ′t(A) = δ(t)Φt(A)− Ae ∗ · · · ∗ Ae︸ ︷︷ ︸
d

,

where d = w(t) is the weight of the tree. For t = t0, d = 0 and Φ′(t0) = 0.

Definition 4.3. For a given matrix A consider subspaces L′k, k = 0, 1, . . . generated by vectors Φ′t(A)
for all trees t of weight k.

Consider another filtration of the space R
¯
n, by M ′

k =
∑k

i=0 L
′
k.

Definition 4.4. We say that the adjoint algebra corresponding to this filtration,

B′(A) =
n⊕
k=0

B′k(A) =
n⊕
k=0

M ′
k/M

′
k−1

is a lower Butcher algebra.

Both algebras B and B′ are commutative, associative, graduated, and finite dimensional.
By construction the action of multiplication by a matrix A is defined on the both algebras. Multi-

plication by a vector Ae is also defined in both algebras: in algebra B it is simply multiplication in B,
while in B′ it is an additional operator.

By construction, L′0(A) = L′1(A) = 0, and so the 0-th and 1-st components of the lower Butcher
algebra have dimension zero, and L′2(A) =< 2A(A(e))− Ae ∗ Ae >, so its dimension is 1.

5 Main Result: Alternative Forms of Butcher Equations

The following theorem shows that introduced subspaces L′k can be defined efficiently via recursion.
Indeed, if we consider L′k using the definition then the number of generators will be equal to the number
of trees of weight k, which is large, while the theorem below provides a more economical.

Theorem 5.1. Let A be an arbitrary lower triangular matrix with zero diagonal. Subspaces L′k can be
defined recursively as follows:

L′k =
(
Ae ∗ L′k−1

)
+ A(L′k−1) +

∑
i+j=k

L′i ∗ L′j .

Lemma 5.2. Let t1 = αt0 be a tree with one edge. Then

1. w(tk1) = k ,

2. δ(tk1) = 1,

3. w(α(tk1)) = k + 1,

4. δ(α(tk1)) = k + 1,

5



5. Φtk1
(A) = Ae ∗ · · · ∗ Ae︸ ︷︷ ︸

k

,

6. Φ′
tk1

(A) = 0,

7. Φα(tk1)
(A) = A(Ae ∗ · · · ∗ Ae︸ ︷︷ ︸

k

),

8. Φ′
α(tk1)

(A) = (k + 1)A(Ae ∗ · · · ∗ Ae︸ ︷︷ ︸
k

)− Ae ∗ · · · ∗ Ae︸ ︷︷ ︸
k+1

.

Proof. Direct computation.

Lemma 5.3. Let t be an arbitrary tree of weight d = w(t). Then

Φ′α(t)(A) = (d+ 1)A(Φ′t(A)) + Φ′α(td1)
(A) .

Proof.
w(α(t)) = d+ 1, δ(α(t)) = (d+ 1)δ(t) ,

Φ′α(t) = (d+ 1)δ(t)A(Φt)− Ae ∗ · · · ∗ Ae︸ ︷︷ ︸
d+1

,

From Definition 9, multiplication by (d+ 1)A leads to

(d+ 1)A(Φ′t) = (d+ 1)δ(t)AΦt − (d+ 1)A(Ae ∗ · · · ∗ Ae︸ ︷︷ ︸
d

) ,

and subtraction yelds

Φ′α(t) − (d+ 1)A(Φ′t) = (d+ 1)A(Ae ∗ · · · ∗ Ae︸ ︷︷ ︸
d

)− Ae ∗ · · · ∗ Ae︸ ︷︷ ︸
d+1

.

q.e.d.

Lemma 5.4. Let t2, t3 be arbitrary trees of weights d2 = w(t2), d3 = w(t3). Then

Φ′t2·t3(A) = Φ′t2(A) ∗ Φ′t3(A) + Φ′t2(A) ∗ Ae ∗ · · · ∗ Ae︸ ︷︷ ︸
d3

+Φ′t3(A) ∗ Ae ∗ · · · ∗ Ae︸ ︷︷ ︸
d2

.

Proof.
w(t2 · t3) = d2 + d3, δ(t2 · t3) = δ(t2)δ(t3) ,

Φ′t2 = δ(t2)Φt2 − Ae ∗ · · · ∗ Ae︸ ︷︷ ︸
d2

,

Φ′t3 = δ(t3)Φt3 − Ae ∗ · · · ∗ Ae︸ ︷︷ ︸
d3

,

Φ′t2·t3 = δ(t2)δ(t3)Φt2 ∗ Φt3 − Ae ∗ · · · ∗ Ae︸ ︷︷ ︸
d2+d3

,

Φ′t2·t3 − Φ′t2 ∗ Φ′t3 =

= δ(t2)Φt2 ∗ Ae ∗ · · · ∗ Ae︸ ︷︷ ︸
d3

+δ(t3)Φt3 ∗ Ae ∗ · · · ∗ Ae︸ ︷︷ ︸
d2

−2Ae ∗ · · · ∗ Ae︸ ︷︷ ︸
d2+d3

or
Φ′t2·t3 − Φ′t2 ∗ Φ′t3 − Φ′t2 ∗ Ae ∗ · · · ∗ Ae︸ ︷︷ ︸

d3

−Φ′t3 ∗ Ae ∗ · · · ∗ Ae︸ ︷︷ ︸
d2

= 0

6



q.e.d. Proof. of the theorem. Observe Lemma 2 and Lemma 3 shows A(L′k) ⊂ L′k+1 and Lemma 3
shows that L′k1 ∗ L

′
k2
⊂ L′k1+k2 , when k1 > 1, k2 > 1. In addition for any tree t of weight k:

Ae ∗ Φ′t(A) = δ(t)Ae ∗ Φt(A)− Ae ∗ · · · ∗ Ae︸ ︷︷ ︸
k+1

= Φ′t1·t(A) ,

where t1 = αt0 be a tree with one edge, shows that Ae ∗ L′k ⊂ L′k+1. By applying this to the result of
Lemma 3, we find that the expression for Φt2·t3 shows that L′k1 ∗L

′
k2
⊂ L′k when k1 +k2 = k. By rewriting

the result of Lemma 2 for a tree with weight w(t) = k, we find A(L′k) ⊂ L′k+1.

Algebraic structures constructed in [Khashin(2009)] are possible if the considered filtrations agree
with ∗-multiplication in Rn and with operator A. This fact for the filtration associated with the upper
Butcher algebra is almost obvious, while the same fact for the one associated with the lower Butcher
algebra is the fact not trivial, but it is now a corollary of the previous theorem.

Corollary 5.5. Subspaces L′k agree with the multiplication in Rn and with operator A, that is

1. Ae ∗ L′k ⊂ L′k+1,

2. A(L′k) ⊂ L′k+1,

3. L′k1 ∗ L
′
k2
⊂ L′k1+k2,

Theorem 5.1 and Corollary 5.5 indicate that the algebraic structures constructed in [Khashin(2009)]
are natural for Butcher equations.

The following theorems, Theorem 5.6 and 5.7 constitute the most important result of the paper.
Theorem 5.6 gives a significantly simplified form for Butcher equations. Note that (d, v) equals to the

last coordinate of vector v, and (5) is a linear system which has all vectors v ∈ Lk(Ã) as solutions.

Therefore, it is enough to verify equality (5) for the basis vectors of Lk(Ã) only.

Theorem 5.6. (Butcher equations in terms of spaces Lk) An extended matrix Ã of size (s+ 1)×(s+ 1)
defines a RK method of order p if and only if

(d, Ãv) =
(d, v)

k + 1
(5)

holds for all k, 0 ≤ k < p and for all v ∈ Lk(Ã).

Proof. Let matrix Ã define a RK method of order p, that is (d,Φt(Ã)) = 1/δ(t) holds for every tree t of
weight w(t), 0 ≤ w(t) < p. To prove that (5) holds, it is enough to verify that for every tree t of some
weight k

(d, Ã · Φt(Ã)) =
(d,Φt(Ã))

k + 1
,

which follows from δ(αt) = δ(t)(w(t) + 1).
Vise versa, let (5) hold. Then for k = 0 we have

(d, Ãe) = (d, e) = 1

that is condition (5) holds for the trees of weight 0. If for some tree t we have

(d,Φt(Ã)) =
1

δ(t)
,

7



then condition (5) implies

(d, Ã · Φt(Ã)) =
(d,Φt(Ã))

k + 1
,

which gives an inductive proof for the theorem.
The following Theorem 5.7 gives yet another form for Butcher equations. It is more convenient for

further solution.

Theorem 5.7. An extended matrix Ã defines a RK method of order p if and only if

1) (d, Ãke) = 1/k!, for k = 0, . . . , p ,
2) ∀v ∈ L′k : (d, v) = 0, for k < p .

(6)

Proof. Prove the equivalence of the conditions to the conditions of Theorem 5.6. Let matrix Ã define a
RK method of order p, that is for all v ∈ Lk, where k < p

(d, Ãv) = (d, v)/(k + 1) .

Since e ∈ L0 and (d, e) = 1, then one can obtain consequently

(d, Ãe) = (d, e)/1 = 1 ,

(d, Ã2e) = (d, Ãe)/2 = 1/2 ,
. . .

(d, Ãpe) = (d, Ãp−1e)/p = 1/p! .

If v ∈ L′k(Ã), that is v ∈ Lk(Ã) and (d, v) = 0, then from (5) one obtains (d, Ãv) = (d, v)/(k + 1) = 0,

which implies Ãv ∈ L′k+1.

Vice versa, let (6) hold and v ∈ Lk. According to Theorem 5.6, we have to prove that (d, Ãv) =

(d, v)/(k + 1) for all k < p and for all v ∈ Lk(Ã). It is trivial for k = 0. Since L1(Ã) =< Ae >, this

holds for k = 1. Now, let 1 < k < p. Since (d, Ãke) = 1/k!, we have

v = k! · (d, v) · Ãke+ w

for some vector w ∈ L′k. Therefore,

(d, Ãv) = (d, Ã(k!(d, v) · Ãke)) + (d, Ãw) =

= k!(d, v)(d, Ãk+1e) = (d, v)/(k + 1) .

The definition below gives an idea of the classification of the RK methods following from the
constructions above. Note that this classification is indeed very natural.

Definition 5.8. Let Ã is an extended Butcher matrix of some RK method. Let

ri = ri(Ã) = dimB′i(Ã) .

We say that the sequence (r1, r2, . . . , rs+1) is the type of the method.

8



References

[Albrecht(1985)] Albrecht P., The theory of A-methods, Numerische Mathematik 47 (1985), pp. 59-87.

[Butcher(1963)] Butcher J. Coefficients for the study of Runge-Kutta integration processes. J Austral
Math Soc 3: 185–201, (1963).

[Butcher(1964a)] Butcher J. Implicit Runge–Kutta processes. Math. Comp. 18:50–64, (1964).

[Butcher(1964b)] Butcher J. On Runge–Kutta processes of high order. J. Austral Math Soc 4: 179–194,
(1964).

[Butcher(2008)] Butcher J.C. Numerical methods for ordinary differential equations (2nd ed.). John
Wiley & Sons, (2008).

[Butcher(2011)] Butcher J.C., On fifth and sixth order explicit Runge-Kutta methods: order conditions
and order barriers. Can.Appl.Math.Q.17, 433445 (2009).

[Feagin (2007)] Feagin T., A tenth-order Runge-Kutta method with error estimate, Proceedings of the
IAENG Conf. on Scientific Computing, (2007).

[Hairer(1978)] Hairer J., A Runge-Kutta method of order 10, J.Inst.Math.Applics, vol.21, 47–59, (1978).

[Hairer(2000)] Hairer J. Nørsett S.P. Solving ordinary differential equations I. Nonstiff Problems. 2Ed.
Springer-Verlag, (2000).

[Khashin(2009)] Khashin S. (2009) A symbolic-numeric approach to the solution of the Butcher Equa-
tions. Canadian Appl.Math.Q.17(3), 555-569 (2009).

[Lang, Serge (2002)] Lang S., Algebra, Graduate Texts in Mathematics, 211 (Revised third ed.), New
York: Springer-Verlag, ISBN 978-0-387-95385-4, MR1878556, (2002).

[Levin A.(2008)] Levin A., Difference algebra, Springer, ISBN 978-1-4020-6946-8, (2008).

[Verner(1996)] Verner J. High-order explicit Runge–Kutta pairs with low stage order. Appl Numer Math
22 (1-3), 345–357, (1996).

9


