Butcher Algebras

Sergei Khashin

Ivanovo State University, Russia

. NUMDIFF-13, Halle, Germany

September 12, 2012

Preliminaries

Butcher tableau is the standard method method of description of Runge-Kutta method:

The coefficients of this table should satisfy order conditions:

$$(b, \Phi_t(A)) = 1/\gamma(t)$$

for each rooted tree t.

Number of eqs, N stages

This polynomial system of equation is large and difficult to solve:

order	1	2	3	4	5	6	7	8	9	10
numb. of eqs	1	2	4	8	17	37	85	200	486	1205
min. stages :				4	6	7	9	11	13	≤ 17

Simplifying assumptions

"Simplifying assumptions" are often used to simplify the system: 1st simplifying assumptions (C(2), with $c_n = 1$). 2nd simplifying assumptions (D(1), with $b_2 = 0$).

order/stages	4/4	5/6	6/7	7/9	8/11	9/13
none : eqs/vars	8/10	17/21	37/28	85/45	200/66	486/91
1 : eqs/vars	4/6	9/15	20/21	48/36	115/55	286/78
2 : eqs/vars		6/11	13/16	32/29	79/46	202/67

Result: algebraic classification of Runge-Kutta methods

- Introduced using Abstract Algebra.
- New simplifying assumptions that
 - are as good as simplifying assumptions 1 and 2 (no solution loss), and
 - used jointly with assumptions 1 and 2 simplifies the system drastically.
- Using new assumptions we were able to obtain new RK methods of order 9.

Vectors

Consider a vector space \mathbb{R}^n , where vectors are considered as columns and

$$e = \left(egin{array}{c} 1 \ dots \ 1 \ 1 \end{array}
ight), \ d = \left(egin{array}{c} 0 \ dots \ 0 \ 1 \end{array}
ight).$$

Let * be the coordinate-wise multiplication in \mathbb{R}^n :

$$(x_1,\ldots,x_n)^t*(y_1,\ldots,y_n)^t=(x_1y_1,\ldots,x_ny_n)^t.$$

Trees multiplication, operators α , Φ

Let t_0 – tree with only one vertex, $t_1 = \alpha t_0$ – two vertex and one edge, $t_2 = \alpha^2 t_0$, $t_3 = t_1 \cdot t_2$, $t_4 = \alpha (t_1 \cdot t_1)$. So

Weight w(t) – number of edges. For arbitrary square matrix A and $e = (1, ..., 1)^t$ we have the weights and operator $\Phi_t(A)$ as follows:

$$w(t_0) = 0, \quad \Phi_{t_0}(A) = e,$$

 $w(t_1) = 1, \quad \Phi_{t_1}(A) = Ae,$
 $w(t_2) = 2, \quad \Phi_{t_2}(A) = A^2e,$
 $w(t_3) = 3, \quad \Phi_{t_3}(A) = Ae*A^2e,$
 $w(t_4) = 3, \quad \Phi_{t_4}(A) = A(Ae*Ae)$

Subspaces L_k

For arbitrary square matrix A of size $n \times n$ consider subspaces generated by $\Phi_t(A)$ with trees of weight k:

$$L_k = <\Phi_t(A)|w(t) = k> \subset \mathbb{R}^n$$
.

For example,

$$\begin{array}{lll} L_0 & = < e > \; , \\ L_1 & = < Ae > \; , \\ L_2 & = < A^2e, \; Ae*Ae > \; , \\ L_3 & = < A^3e, \; A(Ae*Ae), \; A^2e*Ae, \; Ae*Ae*Ae > \; , \\ \dots \end{array}$$

Subspaces M_k

For given matrix A consider a filtration in \mathbb{R}^n : chain of subspaces $0 \subset M_0 \subset M_1 \subset M_2 \ldots$:

$$M_0 = L_0 ,$$

 $M_1 = L_0 + L_1 ,$
 $M_2 = L_0 + L_1 + L_2 ,$
 $M_3 = L_0 + L_1 + L_2 + L_3 ,$
...

Theorem This filtration corresponds to the multiplication, that is

$$M_i * M_i \subset M_{i+1}, \quad A(M_i) \subset M_{i+1}$$
.

Remark. 1st simplifying assumption holds iff $M_p = \mathbb{R}^{s+1}$. 2nd simplifying assumption holds iff $M_{p-1} = \mathbb{R}^{s+1}$.

Algebra B

Definition. We say that the adjoint algebra corresponding to the filtration $0 \subset M_0 \subset M_1 \subset M_2 \dots$:

$$B(A) = \bigoplus_{k=0}^{n} \underbrace{M_k/M_{k-1}}_{B_k(A)}$$

is an upper Butcher algebra of matrix A.

Theorem

"This algebra has nice properties":

- it is graduated,
- operator A acts on it.

Example: "rule 3/8"

Extended Butcher table \widetilde{A} defining this method is

$$\widetilde{A} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1/3 & 0 & 0 & 0 & 0 \\ -1/3 & 1 & 0 & 0 & 0 \\ 1 & -1 & 1 & 0 & 0 \\ 1/8 & 3/8 & 3/8 & 1/8 & 0 \end{pmatrix}.$$

Algebraic constructions above may be completely computed:

$$L_0: \left(egin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}
ight), \ L_1: \left(egin{array}{c} 0 \\ 1/3 \\ 2/3 \\ 1 \\ 1 \end{array}
ight), \ L_2: \left(egin{array}{c} 0 & 0 \\ 0 & 1/9 \\ 1/3 & 4/9 \\ 1/3 & 1 \\ 1/2 & 1 \end{array}
ight),$$

Example: "rule 3/8"

$$M_0: \left(\begin{array}{c} 1\\1\\1\\1\\1\\1\end{array}\right), \ M_1: \left(\begin{array}{cccc} 1&0\\1&1/3\\1&2/3\\1&1\\1&1\end{array}\right), \ M_2: \left(\begin{array}{ccccc} 1&0&0&0\\1&1/3&0&1/9\\1&2/3&1/3&4/9\\1&1&1/3&1\\1&1&1/2&1\end{array}\right),$$

$$M_3=\mathbb{R}^5$$
. So:

$$\begin{array}{lll} B_0 = M_0, & \dim = 1, & B_0 = < e > \, , \\ B_1 = M_1/M_0, & \dim = 1, & B_1 = < Ae > \, , \\ B_2 = M_2/M_1, & \dim = 2, & B_2 = < A^2e, Ae*Ae > \, , \\ B_3 = M_3/M_2, & \dim = 1, & B_3 = < R = Ae*Ae*Ae > \, , \end{array}$$

$$A^2e*Ae = 3/2R, A^3e = 15/4R, A(Ae*Ae) = 0.$$

$$\delta$$
: trees $\to \mathbb{N}$

I suggest to slightly change the standard γ function (call it δ here):

- 1. $\delta(t_0) = 1$,
- 2. $\delta(t_1t_2) = \delta(t_1)\delta(t_2)$ for any $t_1, t_2 \in \mathcal{T}$,
- 3. $\delta(\alpha t) = \delta(t)(w(t) + 1)$ for any $t \in \mathcal{T}$.

t	t_0	t_1	t_2	t ₃	t ₄
w(t)	0	1	2	3	3
$\delta(t)$	1	1	2	2	3
$\gamma(t)$	1	2	6	8	12

Subspaces L'_k

Here we upgrade our construction a little bit (subspaces L'_k and everything denoted by primes).

Definition. For an arbitrary tree t denote by $\Phi'(t)(A)$ vector

$$\Phi'_t(A) = \delta(t)\Phi_t(A) - \underbrace{Ae * \cdots * Ae}_{d}$$
,

where d = w(t) is the weight of the tree.

Definition. For a given matrix A consider subspaces L'_k , $k = 0, 1, \ldots$ generated by vectors $\Phi'_t(A)$ for all trees t of weight k.

$$L'_0 = L'_1 = 0, \ L'_2 = <2A^2e - Ae*Ae >$$
 $L'_3 = <6A^3e - Ae*Ae*Ae, \ 3A(Ae*Ae) - Ae*Ae*Ae,$
 $2A^2e*Ae - Ae*Ae*Ae >$

Subspaces M'_k

For given matrix A consider the filtration $0 \subset M_2' \subset M_3' \ldots$:

$$\begin{array}{ll} M_2' &= L_2' \; , \\ M_3' &= L_2' + L_3' \; , \\ M_4' &= L_2' + L_3' + L_4' \; , \\ \dots \end{array}$$

This filtration corresponds to the multiplication, that is

$$M'_i * M'_i \subset M'_{i+i}, \quad A(M'_i) \subset M'_{i+1}$$
.

Algebra B'

Definition. We say that the adjoint algebra corresponding to the filtration $0 \subset M_2' \subset M_3' \subset \dots$:

$$B'(A) = \bigoplus_{k=0}^{n} B'_{k}(A) = \bigoplus_{k=0}^{n} M'_{k}/M'_{k-1}$$

is an lower Butcher algebra of matrix A.

Remark. Note that all constructions above can be done for an arbitrary square matrix A.

Extended matrix

Define the extended matrix, for example for 6-staged methods. For given RK-method

extended RK matrix is

$$\widetilde{A} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ a_{21} & 0 & 0 & 0 & 0 & 0 & 0 \\ a_{31} & a_{32} & 0 & 0 & 0 & 0 & 0 \\ a_{41} & a_{42} & a_{43} & 0 & 0 & 0 & 0 \\ a_{51} & a_{52} & a_{53} & a_{54} & 0 & 0 & 0 \\ a_{61} & a_{62} & a_{63} & a_{64} & a_{65} & 0 & 0 \\ b_1 & b_2 & b_3 & b_4 & b_5 & b_6 & 0 \end{pmatrix}.$$

Order equations in terms of L_k , L'_k

Theorem (Order equations in terms of L_k). An extended matrix \widetilde{A} defines a RK method of order p if and only if

$$(d, \widetilde{A}v) = \frac{(d, v)}{k+1} \tag{1}$$

holds for all k, $0 \le k < p$ and for all $v \in L_k(\widetilde{A})$.

Theorem(Order equations in terms of L'_k). An extended matrix \tilde{A} defines a RK method of order p if and only if

1)
$$(d, \widetilde{A}^k e) = 1/k!$$
, for $k = 0, ..., p$,
2) $\forall v \in L'_k : (d, v) = 0$, for $k < p$. (2)

Simplifying assumptions

Experimental Fact: For all known RK methods of orders 5 and higher the dimensions of B'_i spaces for small i are the same:

$$i:$$
 0 1 2 3 4 ... $dim(B'_i):$ 0 0 1 1 2 ...

As
$$B'_i = M'_i/M'_{i-1}$$
, so

$$i:$$
 0 1 2 3 4 ... $dim(M'_i):$ 0 0 1 2 4 ... # of generators: 0 0 1 4 11 ...

Remark: We see that the generators are obviously linearly dependent for known methods.

New simplifying assumptions: We assume that this tendency continues to unknown methods too.

Use new simplifying assumptions

Recall our notation:

Denote two generating vectors:

$$\begin{array}{rcl} w_2 &= 2\widetilde{A}^2 e & -\widetilde{A} e * \widetilde{A} e, \\ w_3 &= 6\widetilde{A}^3 e & -\widetilde{A} e * \widetilde{A} e * \widetilde{A} e. \end{array}$$

Use one of the new simplifying assumptions: dim $M'_3 = 2$. This is the simplest simplifying assumption among our new.

So between four vectors w_2 , w_3 , $Ae * w_2$, Aw_2 there should be two relations. The exact coefficients in this relations can be obtained:

Theorem

The relations are:

$$\begin{array}{lclcrcl} K \cdot \widetilde{A}e * w_2 & = & (2a_{32}c_2c_3) \cdot w_2 & + & (c_2-c_3)(2a_{32}c_2-c_3^2) \cdot w_3 \,, \\ K \cdot \widetilde{A}w_2 & = & (a_{32}c_2^3) \cdot w_2 & + & (a_{32}c_2^2) \cdot w_3 \,. \end{array}$$

where
$$K = 2a_{32}c_2^2 - c_3^2(c_2 - c_3)$$
.

Second simplifying assumption together with one new

If matrix \widetilde{A} satisfies second (classical) simplifying assumption, then the first relation is trivial and the second can be rewritten as

$$Aw_2 = -\frac{c_2^2}{2c_3}w_2 + \frac{c_2}{2c_3}w_3.$$

Meaning of simplifying assumptions for matrices

• From the definition of c_k we have

$$a_{k1} = c_k - \sum_{i=2}^{k-1} a_{ki}$$
.

• From the second simplifying assumption we have

$$a_{k2} = \left(c_k^2/2 - \sum_{i=3}^{k-1} a_{ki} c_i\right)/c_2$$
 .

• From our new simplest simplifying assumption dim $M'_3 = 2$:

$$a_{k3} = \left(c_k^2(c_k - c_3) - \sum_{i=4}^{k-1} a_{ki}c_i(3c_i - 2c_3)\right)/c_3^2$$
.

Conclusion

- We suggest an elegant abstract Algebra method for solution of systems appeared in connection with RK methods.
 - Upper and Lower Butcher Algebras are introduced.
 - New "natural" simplifying assumptions are suggested based on this structure.