Butcher Algebras

Sergei Khashin
Ivanovo State University, Russia
NUMDIFF-13, Halle, Germany

September 12, 2012

Preliminaries

Butcher tableau is the standard method method of description of Runge-Kutta method:

c_{2}	a_{21}					
c_{3}	a_{31}	a_{32}				
c_{4}	a_{41}	a_{42}	a_{43}			
c_{5}	a_{51}	a_{52}	a_{53}	a_{54}		
c_{6}	a_{61}	a_{62}	a_{63}	a_{64}	a_{65}	
	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}	b_{6}

The coefficients of this table should satisfy order conditions:

$$
\left(b, \Phi_{t}(A)\right)=1 / \gamma(t)
$$

for each rooted tree t.

Number of eqs, N stages

This polynomial system of equation is large and difficult to solve:

order	1	2	3	4	5	6	7	8	9	10
numb. of eqs	1	2	4	8	17	37	85	200	486	1205
min. stages:				4	6	7	9	11	13	≤ 17

Simplifying assumptions

"Simplifying assumptions" are often used to simplify the system:
1 st simplifying assumptions ($C(2)$, with $c_{n}=1$).
2nd simplifying assumptions $\left(D(1)\right.$, with $\left.b_{2}=0\right)$.

order $/$ stages	$4 / 4$	$5 / 6$	$6 / 7$	$7 / 9$	$8 / 11$	$9 / 13$
none $:$ eqs $/$ vars	$8 / 10$	$17 / 21$	$37 / 28$	$85 / 45$	$200 / 66$	$486 / 91$
$1:$ eqs $/$ vars	$4 / 6$	$9 / 15$	$20 / 21$	$48 / 36$	$115 / 55$	$286 / 78$
$2:$ eqs $/$ vars		$6 / 11$	$13 / 16$	$32 / 29$	$79 / 46$	$202 / 67$

Result: algebraic classification of Runge-Kutta methods

- Introduced using Abstract Algebra.
- New simplifying assumptions that
- are as good as simplifying assumptions 1 and 2 (no solution loss), and
- used jointly with assumptions 1 and 2 simplifies the system drastically.
- Using new assumptions we were able to obtain new RK methods of order 9 .

Vectors

Consider a vector space \mathbb{R}^{n}, where vectors are considered as columns and

$$
e=\left(\begin{array}{c}
1 \\
\vdots \\
1 \\
1
\end{array}\right), d=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

Let $*$ be the coordinate-wise multiplication in \mathbb{R}^{n} :

$$
\left(x_{1}, \ldots, x_{n}\right)^{t} *\left(y_{1}, \ldots, y_{n}\right)^{t}=\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right)^{t}
$$

Trees multiplication, operators α, Φ

Let t_{0} - tree with only one vertex, $t_{1}=\alpha t_{0}$ - two vertex and one edge, $t_{2}=\alpha^{2} t_{0}, t_{3}=t_{1} \cdot t_{2}, t_{4}=\alpha\left(t_{1} \cdot t_{1}\right)$. So

Weight $w(t)$ - number of edges. For arbitrary square matrix A and $e=(1, \ldots, 1)^{t}$ we have the weights and operator $\Phi_{t}(A)$ as follows:

$$
\begin{array}{ll}
w\left(t_{0}\right)=0, & \Phi_{t_{0}}(A)=e \\
w\left(t_{1}\right)=1, & \Phi_{t_{1}}(A)=A e \\
w\left(t_{2}\right)=2, & \Phi_{t_{2}}(A)=A^{2} e \\
w\left(t_{3}\right)=3, & \Phi_{t_{3}}(A)=A e * A^{2} e, \\
w\left(t_{4}\right)=3, & \Phi_{t_{4}}(A)=A(A e * A e)
\end{array}
$$

Subspaces L_{k}

For arbitrary square matrix A of size $n \times n$ consider subspaces generated by $\Phi_{t}(A)$ with trees of weight k :

$$
L_{k}=<\Phi_{t}(A) \mid w(t)=k>\subset \mathbb{R}^{n}
$$

For example,

$$
\begin{aligned}
& L_{0}=<e>, \\
& L_{1}=<A e>, \\
& L_{2}=<A^{2} e, A e * A e>, \\
& L_{3}=<A^{3} e, A(A e * A e), A^{2} e * A e, A e * A e * A e>,
\end{aligned}
$$

Subspaces M_{k}

For given matrix A consider a filtration in \mathbb{R}^{n} : chain of subspaces $0 \subset M_{0} \subset M_{1} \subset M_{2} \ldots$:

$$
\begin{aligned}
& M_{0}=L_{0}, \\
& M_{1}=L_{0}+L_{1}, \\
& M_{2}=L_{0}+L_{1}+L_{2}, \\
& M_{3}=L_{0}+L_{1}+L_{2}+L_{3},
\end{aligned}
$$

Theorem This filtration corresponds to the multiplication, that is

$$
M_{i} * M_{j} \subset M_{i+j}, \quad A\left(M_{i}\right) \subset M_{i+1}
$$

Remark. 1st simplifying assumption holds iff $M_{p}=\mathbb{R}^{s+1}$. 2nd simplifying assumption holds iff $M_{p-1}=\mathbb{R}^{s+1}$.

Algebra B

Definition. We say that the adjoint algebra corresponding to the filtration $0 \subset M_{0} \subset M_{1} \subset M_{2} \ldots$:

$$
B(A)=\bigoplus_{k=0}^{n} \underbrace{M_{k} / M_{k-1}}_{B_{k}(A)}
$$

is an upper Butcher algebra of matrix A.
Theorem
"This algebra has nice properties":

- it is graduated,
- operator A acts on it.

Example: "rule 3/8"

Extended Butcher table \widetilde{A} defining this method is

$$
\widetilde{A}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 0 & 0 \\
-1 / 3 & 1 & 0 & 0 & 0 \\
1 & -1 & 1 & 0 & 0 \\
1 / 8 & 3 / 8 & 3 / 8 & 1 / 8 & 0
\end{array}\right) .
$$

Algebraic constructions above may be completely computed:

$$
L_{0}:\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right), L_{1}:\left(\begin{array}{c}
0 \\
1 / 3 \\
2 / 3 \\
1 \\
1
\end{array}\right), L_{2}:\left(\begin{array}{cc}
0 & 0 \\
0 & 1 / 9 \\
1 / 3 & 4 / 9 \\
1 / 3 & 1 \\
1 / 2 & 1
\end{array}\right)
$$

Example: "rule 3/8"

$$
M_{0}:\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right), M_{1}:\left(\begin{array}{cc}
1 & 0 \\
1 & 1 / 3 \\
1 & 2 / 3 \\
1 & 1 \\
1 & 1
\end{array}\right), M_{2}:\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 / 3 & 0 & 1 / 9 \\
1 & 2 / 3 & 1 / 3 & 4 / 9 \\
1 & 1 & 1 / 3 & 1 \\
1 & 1 & 1 / 2 & 1
\end{array}\right)
$$

$M_{3}=\mathbb{R}^{5}$. So:

$$
\begin{aligned}
& B_{0}=M_{0}, \quad \operatorname{dim}=1, \quad B_{0}=\langle e\rangle, \\
& B_{1}=M_{1} / M_{0}, \quad \operatorname{dim}=1, \quad B_{1}=<A e>, \\
& B_{2}=M_{2} / M_{1}, \quad \operatorname{dim}=2, \quad B_{2}=<A^{2} e, A e * A e>, \\
& B_{3}=M_{3} / M_{2}, \quad \operatorname{dim}=1, \quad B_{3}=<R=A e * A e * A e>, \\
& A^{2} e * A e=3 / 2 R, A^{3} e=15 / 4 R, A(A e * A e)=0 .
\end{aligned}
$$

$\delta:$ trees $\rightarrow \mathbb{N}$

I suggest to slightly change the standard γ function (call it δ here):

1. $\delta\left(t_{0}\right)=1$,
2. $\delta\left(t_{1} t_{2}\right)=\delta\left(t_{1}\right) \delta\left(t_{2}\right)$ for any $t_{1}, t_{2} \in \mathcal{T}$,
3. $\delta(\alpha t)=\delta(t)(w(t)+1)$ for any $t \in \mathcal{T}$.

t	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}
$w(t)$	0	1	2	3	3
$\delta(t)$	1	1	2	2	3
$\gamma(t)$	1	2	6	8	12

Subspaces L_{k}^{\prime}

Here we upgrade our construction a little bit (subspaces L_{k}^{\prime} and everything denoted by primes).
Definition. For an arbitrary tree t denote by $\Phi^{\prime}(t)(A)$ vector

$$
\Phi_{t}^{\prime}(A)=\delta(t) \Phi_{t}(A)-\underbrace{A e * \cdots * A e}_{d}
$$

where $d=w(t)$ is the weight of the tree.
Definition. For a given matrix A consider subspaces L_{k}^{\prime},
$k=0,1, \ldots$ generated by vectors $\Phi_{t}^{\prime}(A)$ for all trees t of weight k.

$$
\begin{gathered}
L_{0}^{\prime}=L_{1}^{\prime}=0, L_{2}^{\prime}=<2 A^{2} e-A e * A e> \\
L_{3}^{\prime}=<6 A^{3} e-A e * A e * A e, 3 A(A e * A e)-A e * A e * A e, \\
2 A^{2} e * A e-A e * A e * A e>
\end{gathered}
$$

Subspaces M_{k}^{\prime}

For given matrix A consider the filtration $0 \subset M_{2}^{\prime} \subset M_{3}^{\prime} \ldots$:

$$
\begin{aligned}
& M_{2}^{\prime}=L_{2}^{\prime}, \\
& M_{3}^{\prime}=L_{2}^{\prime}+L_{3}^{\prime}, \\
& M_{4}^{\prime}=L_{2}^{\prime}+L_{3}^{\prime}+L_{4}^{\prime},
\end{aligned}
$$

This filtration corresponds to the multiplication, that is

$$
M_{i}^{\prime} * M_{j}^{\prime} \subset M_{i+j}^{\prime}, \quad A\left(M_{i}^{\prime}\right) \subset M_{i+1}^{\prime} .
$$

Algebra B^{\prime}

Definition. We say that the adjoint algebra corresponding to the filtration $0 \subset M_{2}^{\prime} \subset M_{3}^{\prime} \subset \ldots$:

$$
B^{\prime}(A)=\bigoplus_{k=0}^{n} B_{k}^{\prime}(A)=\bigoplus_{k=0}^{n} M_{k}^{\prime} / M_{k-1}^{\prime}
$$

is an lower Butcher algebra of matrix A.

Remark. Note that all constructions above can be done for an arbitrary square matrix A.

Extended matrix

Define the extended matrix, for example for 6-staged methods. For given RK-method

c_{2}	a_{21}					
c_{3}	a_{31}	a_{32}				
c_{4}	a_{41}	a_{42}	a_{43}			
c_{5}	a_{51}	a_{52}	a_{53}	a_{54}		
c_{6}	a_{61}	a_{62}	a_{63}	a_{64}	a_{65}	
	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}	b_{6}

extended RK matrix is

$$
\widetilde{A}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
a_{21} & 0 & 0 & 0 & 0 & 0 & 0 \\
a_{31} & a_{32} & 0 & 0 & 0 & 0 & 0 \\
a_{41} & a_{42} & a_{43} & 0 & 0 & 0 & 0 \\
a_{51} & a_{52} & a_{53} & a_{54} & 0 & 0 & 0 \\
a_{61} & a_{62} & a_{63} & a_{64} & a_{65} & 0 & 0 \\
b_{1} & b_{2} & b_{3} & b_{4} & b_{5} & b_{6} & 0
\end{array}\right) .
$$

Order equations in terms of L_{k}, L_{k}^{\prime}

Theorem (Order equations in terms of L_{k}). An extended matrix \widetilde{A} defines a RK method of order p if and only if

$$
\begin{equation*}
(d, \widetilde{A} v)=\frac{(d, v)}{k+1} \tag{1}
\end{equation*}
$$

holds for all $k, 0 \leq k<p$ and for all $v \in L_{k}(\widetilde{A})$.

Theorem(Order equations in terms of L_{k}^{\prime}). An extended matrix \widetilde{A} defines a RK method of order p if and only if

$$
\begin{array}{ll}
\text { 1) }\left(d, \widetilde{A}^{k} e\right)=1 / k!, & \text { for } \quad k=0, \ldots, p, \tag{2}\\
\text { 2) } \forall v \in L_{k}^{\prime}:(d, v)=0, & \text { for } k<p
\end{array}
$$

Simplifying assumptions

Experimental Fact: For all known RK methods of orders 5 and higher the dimensions of B_{i}^{\prime} spaces for small i are the same:

$i:$	0	1	2	3	4	\ldots
$\operatorname{dim}\left(B_{i}^{\prime}\right):$	0	0	1	1	2	\ldots

As $B_{i}^{\prime}=M_{i}^{\prime} / M_{i-1}^{\prime}$, so

$$
\begin{array}{lllllll}
i: & 0 & 1 & 2 & 3 & 4 & \ldots \\
\operatorname{dim}\left(M_{i}^{\prime}\right): & 0 & 0 & 1 & 2 & 4 & \ldots \\
\text { \# of generators : } & 0 & 0 & 1 & 4 & 11 & \ldots
\end{array}
$$

Remark: We see that the generators are obviously linearly dependent for known methods.

New simplifying assumptions: We assume that this tendency continues to unknown methods too.

Use new simplifying assumptions

Recall our notation:

$$
\widetilde{A}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
a_{21} & 0 & 0 & 0 & 0 & 0 & 0 \\
a_{31} & a_{32} & 0 & 0 & 0 & 0 & 0 \\
a_{41} & a_{42} & a_{43} & 0 & 0 & 0 & 0 \\
a_{51} & a_{52} & a_{53} & a_{54} & 0 & 0 & 0 \\
a_{61} & a_{62} & a_{63} & a_{64} & a_{65} & 0 & 0
\end{array}\right), \begin{array}{lll}
\\
& & \cdots
\end{array}
$$

Denote two generating vectors:

$$
\begin{aligned}
& w_{2}=2 \widetilde{A}^{2} e-\widetilde{A} e * \widetilde{A} e, \\
& w_{3}=6 \widetilde{A}^{3} e-\widetilde{A} e * \widetilde{A} e * \widetilde{A} e
\end{aligned}
$$

Use one of the new simplifying assumptions: $\operatorname{dim} M_{3}^{\prime}=2$.
This is the simplest simplifying assumption among our new.
So between four vectors $w_{2}, w_{3}, \widetilde{A} e * w_{2}, \widetilde{A} w_{2}$ there should be two relations. The exact coefficients in this relations can be obtained:

Theorem
The relations are:

$$
\begin{array}{rlr}
K \cdot \widetilde{A} e * w_{2} & =\left(2 a_{32} c_{2} c_{3}\right) \cdot w_{2}+\left(c_{2}-c_{3}\right)\left(2 a_{32} c_{2}-c_{3}^{2}\right) \cdot w_{3}, \\
K \cdot \widetilde{A} w_{2} & =\left(a_{32} c_{2}^{3}\right) \cdot w_{2}+r & \left(a_{32} c_{2}^{2}\right) \cdot w_{3} .
\end{array}
$$

where $K=2 a_{32} c_{2}^{2}-c_{3}^{2}\left(c_{2}-c_{3}\right)$.

Second simplifying assumption together with one new

If matrix \widetilde{A} satisfies second (classical) simplifying assumption, then the first relation is trivial and the second can be rewritten as

$$
A w_{2}=-\frac{c_{2}^{2}}{2 c_{3}} w_{2}+\frac{c_{2}}{2 c_{3}} w_{3}
$$

Meaning of simplifying assumptions for matrices

- From the definition of c_{k} we have

$$
a_{k 1}=c_{k}-\sum_{i=2}^{k-1} a_{k i}
$$

- From the second simplifying assumption we have

$$
a_{k 2}=\left(c_{k}^{2} / 2-\sum_{i=3}^{k-1} a_{k i} c_{i}\right) / c_{2}
$$

- From our new simplest simplifying assumption $\operatorname{dim} M_{3}^{\prime}=2$:

$$
a_{k 3}=\left(c_{k}^{2}\left(c_{k}-c_{3}\right)-\sum_{i=4}^{k-1} a_{k i} c_{i}\left(3 c_{i}-2 c_{3}\right)\right) / c_{3}^{2}
$$

Conclusion

- We suggest an elegant abstract Algebra method for solution of systems appeared in connection with RK methods.
- Upper and Lower Butcher Algebras are introduced.
- New "natural" simplifying assumptions are suggested based on this structure.

