New simplifying assumptions for RK methods

Sergey Khashin
http://math.ivanovo.ac.ru/dalgebra/Khashin/index.html
Ivanovo State University, Russia

ANODE 2013 conference, in honor of John Butcher's 80th birthday

Plan

Preliminaries

Subspaces

Classical simplifying assumptions

Modified subspaces

New simplifying assumptions

Conclusion

Preliminaries

Consider the standard Butcher tableau

c_{2}	a_{21}					
c_{3}	a_{31}	a_{32}				
c_{4}	a_{41}	a_{42}	a_{43}			
c_{5}	a_{51}	a_{52}	a_{53}	a_{54}		
c_{6}	a_{61}	a_{62}	a_{63}	a_{64}	a_{65}	
	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}	b_{6}

with the order conditions

$$
\left(b, \Phi_{t}(A)\right)=1 / \gamma(t)
$$

for each rooted tree t, which form very large polynomial systems:

order	1	2	3	4	5	6	7	8	9	10
number of eqs	1	2	4	8	17	37	85	200	486	1205
min. number of stages:				4	6	7	9	11	13	≤ 17

Extended matrix

For my purposes it is convenient to use an extended $(s+1) \times(s+1)$-matrix A of the RK-method that is defined as follows.

$$
A=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & \ldots & 0 \\
a_{21} & 0 & 0 & 0 & \ldots & 0 \\
a_{31} & a_{32} & 0 & 0 & \ldots & 0 \\
& \ldots & & & & \\
a_{s 1} & a_{s 2} & \ldots & a_{s, s-1} & 0 & 0 \\
b_{1} & b_{2} & \ldots & b_{s-1} & b_{s} & 0
\end{array}\right)
$$

where as usual the first column can be expressed in terms of the others:

$$
a_{k 1}=c_{k}-a_{k 2}-\cdots-a_{k, k-1} \quad \forall k=2 \ldots s .
$$

Trees

Following standard Butcher's approach, we use trees. We recall operations from graph theory.

Here t_{0} is a tree with only one vertex, $t_{1}=\alpha t_{0}$ - adding a vertex and an edge to the root, $t_{2}=\alpha^{2} t_{0}$,
$t_{4}=\alpha\left(t_{2}\right)=\alpha^{3}\left(t_{0}\right)$.
Multiplication of trees:

$$
\begin{aligned}
& t_{3}=t_{1} \cdot t_{1}, \\
& t_{5}=t_{1} \cdot t_{2}, \\
& t_{7}=t_{1} \cdot t_{1} \cdot t_{1} .
\end{aligned}
$$

So we have the following 8 trees of weight ≤ 3.

Also we have almost standard vectors Φ (not completely standard as we use the extended matrix A here):

$$
\begin{array}{ll}
\Phi\left(t_{0}\right)=e, & \Phi\left(t_{4}\right)=A^{3} e, \\
\Phi\left(t_{1}\right)=A e, & \Phi\left(t_{5}\right)=A e * A^{2} e, \\
\Phi\left(t_{2}\right)=A^{2} e, & \Phi\left(t_{6}\right)=A(A e * A e), \\
\Phi\left(t_{3}\right)=A e * A e, & \Phi\left(t_{7}\right)=A e * A e * A e
\end{array}
$$

where $e=(1, \ldots, 1)^{t}$ and "*" - coordinate-wise multiplication in \mathbb{R}^{s+1}.

Subspaces L_{k} and M_{k}

Consider subspaces generated by $\Phi_{t}(A)$ with trees of weight k :

$$
L_{k}=<\Phi_{t}(A) \mid w(t)=k>\subset \mathbb{R}^{s+1}
$$

For example,

$$
\begin{aligned}
& L_{0}=<e>, \\
& L_{1}=<A e> \\
& L_{2}=<A^{2} e, A e * A e>, \\
& L_{3}=<A^{3} e, A(A e * A e), A^{2} e * A e, A e * A e * A e>,
\end{aligned}
$$

Consider a filtration in \mathbb{R}^{s+1} : chain of subspaces $0 \subset M_{0} \subset M_{1} \subset M_{2} \ldots$:

$$
\begin{aligned}
& M_{0}=L_{0}, \\
& M_{1}=L_{0}+L_{1}, \\
& M_{2}=L_{0}+L_{1}+L_{2}, \\
& M_{3}=L_{0}+L_{1}+L_{2}+L_{3},
\end{aligned}
$$

Theorem This filtration corresponds to the multiplication, that is

$$
M_{i} * M_{j} \subset M_{i+j}, \quad A\left(M_{i}\right) \subset M_{i+1}
$$

Classical simplifying assumption $C(2)$

The famous simplifying assumption called $C(2)$ is equivalent to a condition on subspaces !!!!

$$
M_{p-1}=\mathbb{R}^{s+1}
$$

Theorem Let A be the extended matrix of an s-stage RK-method of order p. The following statements are equivalent:

1. $C(2)$ applies;
2. subspace M_{p-1} coincide with total space \mathbb{R}^{s+1};
3. $T d=T^{2} d+A e * T d$, where $T=A^{t}$ is the transposed matrix, and $d=(0, \ldots, 0,1)^{t}$.
In this case the equations that correspond to trees of the form αt for an arbitrary tree t ("maimed" trees) will be consequences of the others.
Remark. The last (vector) equation allows us to express the elements of the penultimate row of the matrix A in terms of the other elements in the matrix.

Classical simplifying assumption $D(1)$

The famous simplifying assumption called $D(1)$ is also equivalent to a condition on subspaces:

$$
M_{p-2}=\mathbb{R}^{s+1}
$$

Theorem. Let A be the extended matrix of an s-stage RK-method of order p. The following statements are equivalent:

1. $D(1)$ applies;
2. subspace M_{p-2} coincide with total space \mathbb{R}^{s+1};
3. $\left(A e * A e-2 A^{2} e\right) * T d=0$, where $T=A^{t}$ is the transposed matrix, and $d=(0, \ldots, 0,1)^{t}$.
In this case the equations that correspond to trees of the form $t \cdot t_{2}$, where t is an arbitrary tree, will be consequences of the others.

Classical simplifying assumptions

The following table shows how the number of variables and the number of equations change when one of the simplifying assumptions is applied.

order $/$ stages	$4 / 4$	$5 / 6$	$6 / 7$	$7 / 9$	$8 / 11$	$9 / 13$
none $:$ eqs $/$ vars	$8 / 10$	$17 / 21$	$37 / 28$	$85 / 45$	$200 / 66$	$486 / 91$
$C(2):$ eqs $/$ vars	$4 / 6$	$9 / 15$	$20 / 21$	$48 / 36$	$115 / 55$	$286 / 78$
$D(1):$ eqs $/$ vars		$6 / 11$	$13 / 16$	$32 / 29$	$79 / 46$	$202 / 67$

Note that $C(2)$ is the consequence of $D(1)$. There exist methods of order 5 , for which $C(2)$ does not hold. There exist methods of orders up to 7 inclusive, for which $D(1)$ does not hold.

Simplifying assumptions via subspaces

Thus,

1. $M_{p-1}=\mathbb{R}^{s+1}$ is the same as $C(2)$;
2. $M_{p-2}=\mathbb{R}^{s+1}$ is the same as $D(1)$;
3. $M_{p-3}=\mathbb{R}^{s+1}$???? (shall we name it $E(0)$???)

Theoretically, we can find further simplifying assumptions as $M_{p-3}=\mathbb{R}^{s+1}, \ldots$. However, it turns out that they are not true for many interesting methods.

That is why we suggest further modification of our idea.

Subspaces L_{k}^{\prime}

Thus, we change our construction a little (our new subspaces are denoted by primes).
Definition. For an arbitrary tree t, define the vector

$$
\Phi_{t}^{\prime}(A)=\delta(t) \Phi_{t}(A)-\underbrace{A e * \cdots * A e}_{d},
$$

where $d=w(t)$ is the weight of the tree, and $\delta(t)$ is some modification of the standard $\gamma(t)$.
Note that the order conditions imply that the last coordinate of this vector is zero for $d<p$.
Definition. For a given matrix A consider subspaces L_{k}^{\prime}, $k=0,1, \ldots$ generated by vectors $\Phi_{t}^{\prime}(A)$ for all trees t of weight k.

$$
\begin{aligned}
L_{0}^{\prime} & =L_{1}^{\prime}=0, \\
L_{2}^{\prime} & =<2 A^{2} e-A e * A e> \\
L_{3}^{\prime} & =<6 A^{3} e-A e * A e * A e, 3 A(A e * A e)-A e * A e * A e, \\
& 2 A^{2} e * A e-A e * A e * A e>
\end{aligned}
$$

Subspaces M_{k}^{\prime}

For given matrix A consider the filtration $0 \subset M_{2}^{\prime} \subset M_{3}^{\prime} \ldots$:

$$
\begin{aligned}
& M_{0}^{\prime}=0, \\
& M_{1}^{\prime}=0, \\
& M_{2}^{\prime}=L_{2}^{\prime}, \quad\left(\operatorname{dim} M_{2}^{\prime}=1\right) \\
& M_{3}^{\prime}=L_{2}^{\prime}+L_{3}^{\prime}, \\
& M_{4}^{\prime}=L_{2}^{\prime}+L_{3}^{\prime}+L_{4}^{\prime},
\end{aligned}
$$

This filtration corresponds to the multiplication, that is

$$
M_{i}^{\prime} * M_{j}^{\prime} \subset M_{i+j}^{\prime}, \quad A\left(M_{i}^{\prime}\right) \subset M_{i+1}^{\prime} .
$$

New simplifying assumptions

We calculate the dimensions of the introduced subspaces $B_{k}^{\prime}=M_{k}^{\prime} / M_{k-1}^{\prime}$ for all known RK-methods:

| Method, $\quad \mathrm{k}:$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $R K(\mathrm{p}=3, \mathrm{~s}=3):$ | 0 | 0 | 1 | 1 | - | - | - | - | - |
| $R K(\mathrm{p}=4, \mathrm{~s}=4):$ | 0 | 0 | 1 | 1 | 1 | - | - | - | - |
| $R K(\mathrm{p}=5, \mathrm{~s}=6):$ | 0 | 0 | 1 | 2 | 1 | 1 | - | - | - |
| $R K(\mathrm{p}=6, \mathrm{~s}=7):$ | 0 | 0 | 1 | 1 | 2 | 1 | 1 | - | - |
| $R K(\mathrm{p}=7, \mathrm{~s}=9):$ | 0 | 0 | 1 | 1 | 2 | 2 | 1 | 1 | - |
| $R K(\mathrm{p}=8, \mathrm{~s}=11):$ | 0 | 0 | 1 | 1 | 2 | 2 | 2 | 1 | 1 |

Note that the sum of the elements in each row is $s-1$.
We suggest the next new simplifying assumption: $\operatorname{dim} B_{3}^{\prime}=1$. We see from the table that $\operatorname{RK}(p=5, s=6)$ will not satisfy this condition. However, for all known higher order RK methods it holds.

Vectors w_{k}

Now more detailed computations.
Definition
For $k \geq 2$ denote by w_{k} vector

$$
w_{k}=k A(\underbrace{A e * \cdots * A e}_{k-1})-\underbrace{A e * \cdots * A e}_{k} \in L_{k}^{\prime} .
$$

That is

$$
\begin{aligned}
w_{2} & =2 A^{2} e-A e * A e, \\
w_{3} & =3 A(A e * A e)-A e * A e * A e, \\
w_{4} & =4 A(A e * A e * A e)-A e * A e * A e * A e, \\
& \ldots,
\end{aligned}
$$

This vectors w_{k} allow us to define L_{k}^{\prime} recursively (we shall omit the details here, and show only the consequences).

Simplifying assumptions of level 3,4

We propose to call

1. $C(2)$ level 1 simplification;
2. $D(1)$ level 2 simplification.

Simplifying assumptions of level 3: $\operatorname{dim} B_{3}^{\prime}=1$, that is $\operatorname{dim} M_{3}^{\prime}=2$.
In other words, the dimension of subspace in \mathbb{R}^{s+1} generated by $w_{2}, w_{3}, A e * w_{2}, A w_{2}$ equals 2.

Simplifying assumptions of level 4: $\operatorname{dim} B_{4}^{\prime}=2$, that is $\operatorname{dim} M_{4}^{\prime}=4$.
In other words, the dimension of subspace in \mathbb{R}^{s+1} generated by $w_{2}, w_{3}, A e * w_{2}, A w_{2}, w_{4}, A e * w_{3}, A w_{3}, w_{2} * w_{2}$ equals 4.

Simplification of level 3

Now more detils on simplification of level 3.
The condition of the linear dependency of the generating vectors implies that everything can be expressed in terms of w_{2} and w_{3} :

$$
\begin{array}{ll}
d \cdot A w_{2} & =a_{32} c_{2}^{2}\left(c_{2} \cdot w_{2}-w_{3}\right), \\
d \cdot A e * w_{2} & =\left(3 c_{2}-2 c_{3}\right) c_{2}^{2} a_{32} \cdot w_{2}-\left(c_{2}-c_{3}\right)\left(2 a_{32} c_{2}-c_{3}^{2}\right) \cdot w_{3},
\end{array}
$$

where $d=a_{32} c_{2}^{2}+c_{3}^{2}\left(c_{2}-c_{3}\right)$.
If in addition, the simplifying assumption of level 2 holds and among all the b_{i}-s, only $b_{2}=0$, then we can simplify further:

$$
\begin{array}{ll}
A e * w_{2} & =c_{2} w_{2}, \\
A w_{2} & =\frac{c_{2}}{2 c_{3}}\left(-c_{2} w_{2}+w_{3}\right) .
\end{array}
$$

Meaning of simplifying assumptions for matrices

Now we show the result of these simplifications on matrix coefficients.

- From the definition of c_{k} we have

$$
a_{k 1}=c_{k}-\sum_{i=2}^{k-1} a_{k i}
$$

- From the second simplifying assumption we have (we suggest to name them Level 2):

$$
a_{k 2}=\left(c_{k}^{2} / 2-\sum_{i=3}^{k-1} a_{k i} c_{i}\right) / c_{2}
$$

- From our new simplifying assumption $\operatorname{dim} M_{3}^{\prime}=2$ (we named them Level 3):

$$
a_{k 3}=\left(c_{k}^{2}\left(c_{k}-c_{3}\right)-\sum_{i=4}^{k-1} a_{k i} c_{i}\left(3 c_{i}-2 c_{3}\right)\right) / c_{3}^{2}
$$

Simplification of level 4

M_{4}^{\prime} generated by M_{3}^{\prime} and 3 vectors: $A w_{3}, A w_{3}$ and $w_{2} * w_{2}$.
Subspace M_{3}^{\prime} is generated by $\left(w_{2}, w_{3}\right)$,
subspace M_{4}^{\prime} is generated by $\left(w_{2}, w_{3}, w_{4}, A e * w_{3}\right)$.
This is true under the small restriction $3 c_{2} \neq 2 c_{3}$. If $3 c_{2}=2 c_{3}$ we have to take some other generators.

Since $w_{2}=\left(0,-c_{2}^{2}, 0, \ldots, 0\right)^{t}$, then $w_{2} * w_{2}=-c_{2}^{2} / 2 w_{2}$, and, therefore, we have only one relation:

$$
A w_{3}=x_{2} w_{2}+x_{3} w_{3}+x_{4} w_{4}+x_{4 a} w_{42},
$$

the coefficients of which can be found explicitly:

Simplification of level 4

$$
\begin{aligned}
& x_{2}=3 a_{54} c_{4}\left(c_{4}-1\right)\left(c_{4}-c_{5}\right)\left(2 c_{4}-3\right) / d, \\
& x_{3}=2 x_{2}\left(c_{4}-2\right) /\left(2 c_{4}-3\right) \\
& x_{4}=\left(a_{54} c_{4}\left(1-c_{4}\right)\left(2 c_{4}^{2}-c_{4}-c_{5}\right)+d_{0}\right) / d, \\
& x_{4 a}=-x_{2}-x_{3}-x_{4}
\end{aligned}
$$

where

$$
\begin{aligned}
& d_{0}=c_{5}^{2}\left(c_{5}-1\right)\left(c_{4}-c_{5}\right), \\
& d=2 a_{54} c_{4}\left(c_{4}-1\right)\left(4 c_{4}^{2}-3 c_{4} c_{5}-5 c_{4}+3 c_{5}\right)-d_{0} .
\end{aligned}
$$

Simplification of level 4

Red coefficients can be expressed in terms of the others:

c_{2}					
c_{3}	a_{32}				
c_{4}	a_{42}	a_{43}			
c_{5}	a_{52}	a_{53}	a_{54}		
c_{6}	a_{62}	a_{63}	a_{64}	a_{65}	
c_{7}	a_{72}	a_{73}	a_{74}	a_{75}	\ldots
c_{8}	a_{82}	a_{83}	a_{84}	a_{85}	\ldots

That is the number of the variables is reduced.
The number of equations (order conditions) is reduced too.
Indeed, only non- "maimed" trees that is those that do not contain subtrees t_{2} and t_{6} are left.

Conclusion

1. The nature of the simplifying assumptions $C(2)$ and $D(1)$ is understood in a new way; they become a part of new systematic approach;
2. extending the approach to higher levels brings new simplifying assumptions. They reduce the number of variables and the number of equations.

Thank you!!!!

