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Abstract

A new (abstract algebraic) approach to the solution of the order conditions for Runge-Kutta methods
(RK) and to the corresponding simplifying assumptions was suggested in [9, 10]. The approach implied
natural classification of the simplifying assumptions and allowed to find new RK methods of high orders.

Here we further this approach. The new approach is based on the upper and lower Butcher’s algebras.
Here we introduce axillary varieties MD and prove that they are projective algebraic varieties (Theorem
3.2). In some cases they are completely described (Theorem 3.5).

On the set of the 2-standard matrices (Definition 4.4) (RK methods with the property b2 = 0) the one-
dimensional symmetries are introduced. These symmetries allow to reduce consideration of the RK methods
to the methods with c2 = 2/3 c3, that is c2 can be removed from the list of unknowns.

We formulate a hypothesis on how this method can be generalized to the case b2 = b3 = 0 where
two-dimensional symmetries appear.

1 Introduction

The problem of construction of Runge-Kutta (RK) methods can be reduced to the solution of the order conditions
(Butcher equations) that are the systems of large number of polynomial equations in large number of variables
[1, 3, 7]. Numerous particular RK methods were obtained [2, 7, 4, 5, 13, 15, 17], but the general problem of the
construction and the description of the RK methods remain open [2, 8, 15, 16].

One of the most important tool for obtaining RK methods are simplifying assumptions [2, 7, 15, 16]. Two
of them are particular popular ( C(2) and D(1) in [2, 7, 14]).

In papers [9, 10] we started a new abstract algebraic approach to the solution of Butcher’s equations and
developed new type of simplifying assumptions (based on the restriction of dimensions of some subspaces Mk,
M ′k). In the present paper, this approach is refined and formalized. For this purpose, the projective algebraic
varieties MD (Definition 3.1) are introduced. Their dimensions are calculated in some cases (Theorem 3.5).

Some ideas suggested here are mentioned in the profound paper [14], which is concerned with the general
theory of RK methods.

The simplifying assumption D(1) is defined by the following system of equalities:

b2 = 0 ,
b3(a32c2 − c22/2) = 0 ,
b4(a42c2 + a43c3 − c23/2) = 0 ,
. . .
bs(as2c2 + · · ·+ as,s−1cs−1 − c2s/2) = 0 ,

(1)

Hence b2 = 0 and for each k > 2 either bk = 0, or

c2k
2

= ak2c2 + . . . ak,k−1ck−1 . (2)
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In the present paper we consider the case where for all k > 2 equality (2) holds. The matrix, that is satisfied
this condition will be called a 2-standard matrix (Definition 4.4). Our construction is valid for both Butcher’s
and arbitrary matrices. Most of the known RK methods of high order (see, for example, [1, 7, 17]) satisfy this
condition.

We suggest to consider one-dimensional symmetry on the set of the 2-standard matrices (2-transformation,
Definition 4.6). The symmetry is the action of the group of nonzero reals R∗ that is preserves the spaces Mk

and Mk. From the point of view of the RK methods, this means that for each method satisfying the second
simplifying assumption one can get a family of new RK methods (Theorem 4.6) with c2 as a non-zero parameter
(the remaining ci are unchanged). That is by a suitable 2-transformations one can transform any RK method
to the one of the same order with c2 = 2/3 c3. This means, that it is enough to consider RK methods with
c2 = 2/3 c3.

In conclusion, we formulate a Hypothesis 4.9, that the method can be generalized to the case of b2 = b3 = 0.
More complicated two-dimensional symmetries will be acting on the corresponding set of matrices. It would be
also interesting to find out the structures of the upper and lower Butcher’s algebras in this case. We do not
expect them to be the same as for the 2-standard matrices.

The paper is organized as follows. In Sec. 2 we fix some notations and highlight some needed results from
the previous papers of the author. In Sec. 3 we introduce varieties MD and prove their properties. In Sec. 4
we introduce 2-standard matrices and their symmetries. We study their properties and formulate hypothesis
on its non-trivial generalization to the case b2 = b3 = 0.

2 Preliminaries

Let an s-stage RK methods be defined by its Butcher tableau

c2 a21
c3 a31 a32

. . .
cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

(3)

Then the corresponding order conditions (Butcher equations) for a RK method [1, 7] of order p are as follows.

s∑
j=1

bjΦtj(A) = bT Φt(A) = (b,Φt(A)) = 1/γ(t) , (4)

where t is an arbitrary tree of order ρ(t) ≤ p, and Φt(A) is a homogeneous polynomial of degree (w(t) − 1) of
coefficients from the matrix A.

Let A and b = (b1, . . . bs) be the matrix and the row-vector defining an s-stage RK method of order p,

A =


0 0 . . . 0
a21 0 . . . 0

. . .
as1 as2 . . . 0

 . (5)

As in [9] we consider instead of the pair (A, b), the extended matrix, which is matrix A with an extra row b at
the bottom, and an extra column of zeros on the right to make it square. We denote the extended matrix by
A, which should not lead to a confusion, since we are not using the initial matrix (5).

Several algebraic constructions of the present paper are valid for arbitrary lower-triangular with a zero
diagonal matrices:

A =


0 0 0 0 0
a21 0 0 0 0
a31 a32 0 0 0

. . .
an1 an2 . . . an,n−1 0

 , (6)
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the sum of elements of a string we will denote as

ck = ak1 + · · ·+ ak,k−1 .

The dimension of the space of such matrix is n(n − 1)/2. Therefore, for the sake of generality, we consider
extended matrix A in the form (6). That is n = s+ 1 and b1 = an1, . . . , bs = an,n−1.

In ([10], Theorem 3) we found a convenient form for Butcher equations. Namely, an extended matrix A
defines a RK method of order p if and only if

(d,Φt(A)) =
1

δ(t)
(7)

holds for every tree t of the weight less or equal to p.
By e we denote column vector e = (1, . . . , 1)t. Then

Ae = (0, c2, . . . , cn)t .

By ∗ we denote the coordinate-wise multiplication in Rn:

(x1, . . . , xn)t ∗ (y1, . . . , yn)t = (x1y1, . . . , xnyn)t .

Recall some algebraic constructions introduced in [9]. We considered subspaces Lk =< Φt(A) > of Rn where
t is a tree of weight k, and the filtration 1 of the space Rn for every given matrix A: Mk = L0 + · · ·+Lk. Then

M0 ⊂M1 ⊂ · · · ⊂ Rn

In [10] we introduced vectors Φ′t(A) as follows. For an arbitrary tree t

Φ′t(A) = δ(t)Φt(A)−Ae ∗ · · · ∗Ae︸ ︷︷ ︸
d

,

where d = w(t) is the weight of the tree. For t = t0, d = 0 and Φ′(t0) = 0. Then for a given matrix
A we considered subspaces L′k, k = 0, 1, . . . generated by vectors Φ′t(A) for all trees t of weight k, and the
corresponding filtration of the space R

¯
n by subspaces M ′k = L′2 + · · ·+ L′k.

3 Varieties MD

The essential result of [9, 10] for the theory of RK methods, is that the restrictions of the dimensions of the
vector spaces Mk and M ′k give simplifying assumptions which hold for almost all known RK methods of high
order. Using two of these new simplifying assumptions we obtained several new families of RK methods of high
orders. We hypothesize that using new simplifying assumptions one can obtain the general solution of Butcher
equations.

By definition, the space M0 for arbitrary matrix A is generated by one vector e, so dimM0 = 1 always. The
space M1 is generated by two vectors e and Ae. So, dimM1 = 2 if at least one of the ck are non-zero. Spaces
M ′0 and M ′1 are zero by definition. When k ≥ 2 the dimensions of spaces Mk M ′k depend on the matrix.

Definition 3.1. For a given set of integers D = (d1, . . . , dk) denote by MD(n) the set of n×n-matrices, such
that dimMi ≤ di, and by M′D(n) the set of matrices, such that dimM ′i ≤ di.
Theorem 3.2. The setsMD(n) andM′D(n) are projective algebraic varieties 2 in the space of lower-triangular
matrices with zero diagonal.

Proof. The coefficients of vectors Φt(A) are polynomially expressed through the coefficients of the matrix A.
Vectors Φt(A) are linearly dependent, if the corresponding determinants of their coefficients are zeros. Therefore,
the setsMD(n) andM′D(n) are given by some systems of polynomial equations of the coefficients of the matrix
A and, therefore, are affine algebraic varieties.

To prove thatMD(n) andM′D(n) are projective, it is sufficient to prove, that if the matrix A ∈MD(n) (or
M′D(n)), then λA ∈MD(n) (M′D(n) correspondingly) for all nonzero λ ∈ R. When matrix A are multiplied by
λ, the vector Φt(A) are multiplied by λd where d = ρ(t) is the weight of the tree. Then Φ′t(A) is also multiplied
by λd. Therefore, the spaces generated by any set of vectors of the form Φt(A), Φ′t(A) are not changed.

1The definitions of filtration and of adjoint graded algebras are standard and can be found for example in [11], p.172, [12], p.37.
2The definitions of algebraic and projective algebraic vaireties can be found for example in [6]
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Remark 3.3. If D1 ≤ D2 (termwise), then MD1
⊆MD1

and M′D1
⊆M′D1

.

Theorem 3.4. • Variety M(0)(n) is empty.

• Variety M(1)(n) are given by equations c2 = c3 = · · · = cn = 0 and hence have codimension n− 1.

• Variety M(k)(n) coincides with the set of all matrices when k ≥ 2.

• codimM(2,2)(n) = 2(n− 2).

• codimM(2,3)(n) = n− 2.

• codimM(2,k)(n) = 0 for k ≥ 4.

• codimM′(k)(n) = 0 for k ≥ 0.

• codimM′(0,0)(n) = n− 1.

• codimM′(0,k)(n) = 0 for k ≥ 1.

Proof. All the statements can be verified by direct computations.
The following theorem is one of the main results of the present paper.

Theorem 3.5. For n ≥ 4 we have

a) codim M′(0,1,2)(n) =
n(n− 1)

2
− dimM′(0,1,2)(n) = 2(n− 3) ,

b) codim M′(0,1,3)(n) =
n(n− 1)

2
− dimM′(0,1,3)(n) = n− 4 .

Proof. The statement of the theorem mean that the dimensions of spaces M ′1,M
′
2,M

′
3 satisfy the following

conditions.

• dimM ′1 ≤ 0;

• dimM ′2 ≤ 1;

• dimM ′3 ≤ 2 in case (a) and ≤ 3 in case (b).

The space M ′1 is zero by definition, and, therefore, the first condition is true. The space M ′2 is generated
by one vector w2 = 2A2e−Ae∗Ae, and hence its dimension is less or equal 1. The space M ′3 is generated by 4
vectors

M ′3 =< 2A2e−Ae ∗Ae, 3A(Ae∗Ae)−Ae∗Ae∗Ae, 2A2e∗Ae−Ae∗Ae∗Ae, 6A3e−Ae∗Ae∗Ae > .

which can be written in simple form

M ′3 =< w2, w3, w2∗Ae, 3Aw2 + w3 > ,

where w3 = 3Ae∗Ae∗Ae−A3e. The same space M ′3 can be generated as

M ′3 =< w2, w3, w2∗Ae,Aw2 > ,

where

w2 =


0
−c22

2a32c2 − c23
2(a42c2 + a43c3)− c24

. . .

 , w3 =


0
−c32

3a32c
2
2 − c33

3(a42c
2
2 + a43c

2
3)− c34

. . .

 ,

w2∗Ae =


0
−c32

(2a32c2 − c23)c3
(2(a42c2 + a43c3)− c24)c4

. . .

 , Aw2 =


0
0

−a32c22
−a42c22 + a43(2a32c2 − c23)

. . .

 ,
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To prove statement (b) it is sufficient to show, that between the four vectors there is at least one linear
relation:

x1w2 + x2w3 + x3w2∗Ae+ x4Aw2 = 0 (8)

for some real numbers x1, x2, x3, x4.
By construction, the first coordinates of vectors w2, w3, w2∗Ae,Aw2 are zeros. Comparing the corresponding

second, third and fourth components of the vector equality (8), coefficients xi can be expressed in terms of
the second, third and fourth components of vectors w2, w3, w2∗Ae,Aw2, that is, in terms of the coefficients
a2i, a3i, a4i of the initial matrix A. These expressions are huge. However, the explicit expressions are not
important. Comparing the rest of the corresponding components in vector equality (8), we obtain n − 4
relations between the elements of the matrix A. Thus, the statement (b) is proved.

To prove statement (a), it is sufficient to find all matrices A, such that vectors w2, w3, w2∗Ae,Aw2 generate
a two-dimensional space. That is between these four vectors there are at least two linear relations, two vector
equalities. Comparing the corresponding second and third components of these vector equalities, we obtain the
following relations.

d ·Aw2 = a32c
2
2(c2 · w2 − w3) ,

d ·Ae ∗ w2 = (3c2 − 2c3)c22a32 · w2 − (c2 − c3)(2a32c2 − c23) · w3 ,
(9)

where d = a32c
2
2 + c23(c2 − c3).

Relations (9) are linear relations between the elements of the k-th row of the matrix A for all k ≥ 4. The
total number of relations equals to 2(n− 3). This finishes the prove of statement (a).

Remark 3.6. Vector equality (9) can be written directly in terms of vectors Φt(A):

(Aw2) : 2(3c2 − 2c3)A3e = c2Ae∗Ae∗Ae− 2c3A(Ae∗Ae) + c22(2A2e−Ae∗Ae),
(Ae∗w2) : 2Ae∗A2e = Ae∗Ae∗Ae+ 2c2A

2e− c2Ae∗Ae.

It follows that the dimension of the space M3, generated by 8 vectors

e, Ae, A2e, Ae∗Ae, A3e, A(Ae∗Ae), A2e∗Ae, Ae∗Ae∗Ae,

equals to 6.

4 2-transformations

In the following definition we construct a set of transitions (symmetries) of RK methods.

Definition 4.1. Let A be a lower triangular matrix with zero diagonal. The transition with parameter λ 6= 0
from a matrix A = (aij) to a matrix A′ = (a′ij) is called 2-transformation, if all of the following holds.

• All the columns of the matrix A′ but the first two coincide with the columns of the matrix A.

• The second column of the matrix is divided by λ: a′k2 = ak2/λ.

• a′k1 = ak1 + (1− 1/λ)ak2 for k ≥ 3.

• a′21 = λa21.

Remark 4.2. Matrix A′ from Definition 4.1 and vector C ′ = A′e can be given explicitly as follows.

A′ =


0 0 0 . . .

λa21 0 0 . . .
a31 + (1− 1/λ)a32 a32/λ 0 . . .
a41 + (1− 1/λ)a42 a42/λ a43 . . .
a51 + (1− 1/λ)a52 a52/λ a53 . . .

. . .

 , C ′ =


0
λc2
c3
c4
c5
. . .
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Theorem 4.3. (Properties of 2-transformations)
a) c′2 = λc2, c′3 = c3, . . . , c

′
n = cn. In the vector form

C ′ = A′e = C + c2(λ− 1)e2

where e2 = (0, 1, 0, . . . , 0)t.
b) A′ 2e = A2e.
c) for k ≥ 1:

A′(C ′k) = A(Ck) + (λk−1 − 1)ck2w,

where w = (0, a32, . . . , an2)t is a second column of matrix A.

Proof. The statements (a) can be verified by the direct computation.
(b) We have

A′2e = A′C ′ =


0
0
c3
c4
c5
. . .

 = A2e.

(c) The k-th (k ≥ 3) coordinate of the vector A′(C ′k) equals to

ak2c
k
2λ

k−1 + ak3c
k
3 + . . . ,

that is it differs from the k-th component of the vector A(Ck) by ak2c
k
2(λk−1 − 1).

In the following definition, we introduce 2-standard matrices, that are some of the matrices, satisfying second
simplifying assumption (D(1)).

Definition 4.4. Let the lower triangular matrix A with zero diagonal be called 2-standard, if for all k ≥ 3

c2k/2 =

k−1∑
i=2

akici ,

where ck be a sum of the elements of k-th row of matrix A.

For 2-standard matrix we have

w2 = 2A2e−Ae ∗Ae =


0
−c22

0
0
. . .

 ,

and the elements of the second column of the matrix A can be expressed in terms of the rest of the elements:

a32 = c23/(2c2),
a42 = (c24/2− a43c3)/c2,
a52 = (c25/2− a53c3 − a54c4)/c2,
. . .

In addition, in this case

Aw2 = −c22


0
0
a32
a42
. . .

 .

In [10] Butcher equations are formulated in terms of subspaces Lk(A) and L′k(A) (Theorem 5 and Theorem
6) in terms of subspaces Lk(A) and L′k(A). For a more detailed study of the properties of the 2-transformations
it is convenient to present this conditions in the following form.
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Theorem 4.5. (Order conditions in terms M ′k) The extended matrix A defines a RK method of order p if and
only if

(1) (Ae, d) = 1,
(2) M ′p ⊥ d ,

where d = (0, . . . , 0, 1)t.

Proof. Let matrix A defines a RK method of order p. Then it satisfies the order conditions ([10], Theorem 3):
for each tree t of weight ≤ p

(Φt(A), d ) =
1

δ(t)
. (10)

For the tree with one edge this means that (Ae, d) = 1. Hence, the last coordinate of the vector Ae is equaled
to 1. This proves statement (1).

From (Ae, d) = 1 it follows, that (Ae∗ . . . ∗Ae, d) = 1. To prove statement (2) it is sufficient to verify that
each vector generating space M ′p is orthogonal to vector d. By definition, the space M ′p = L′2 + · · · + L′p is
generated by the vectors

Φ′t(A) = δ(t)Φt(A)−Ae∗ . . . ∗Ae︸ ︷︷ ︸
d

,

for all trees t of weight d ≤ p. Then relation (Φ′t(A), d) = 0 immediately follows from (10) for tree t.
Now let us prove the statement of the theorem in the opposite direction. Let conditions (1) and (2) of the

theorem hold simultaneously.
As (Ae, d) = 1, then (Ae∗ . . . ∗Ae, d) = 1. Condition (2) means that for an arbitrary tree t of weight d ≤ p

(Φ′t(A), d) = (δ(t)Φt(A)−Ae∗ . . . ∗Ae, d) = 0,

that is
(δ(t)Φt(A), d) = 1 .

The latter is exactly the order condition (10).
In the following theorem we prove that 2-transformation preserve Butcher equations.

Theorem 4.6. Let A be a 2-standard matrix and A′ be the result of its 2-transformation with parameter λ 6= 0.
Then

a) the spaces Mk(A′) coincide with the spaces Mk(A) for k 6= 1,
b) the spaces M ′k(A′) coincide with the spaces M ′k(A),
c) the matrix A′ is an extended matrix of RK method of order of p if and only if the matrix A is an extended

matrix of RK method.

Proof. a) For k = 0 we have M0(A′) = M0(A) = e.
By definition, the space L2(A) is generated by vectors A2e and Ae∗Ae. As A is a 2-standard matrix,

only the second component of the vector w2 = 2A2e − Ae∗Ae ∈ L2 is different from zero. According to the
properties of the 2-transformations (Theorem 4.3), A′2e = A2e and the vector A′e∗A′e differs from Ae∗Ae only
in 2nd component. Hence, L2(A′) = L2(A). Since the vector A′e differs from the vector Ae only in the second
component, the spaces M2(A) = L0(A) + L1(A) + L2(A) and M2(A′) = L0(A′) + L1(A′) + L2(A′) coincide.

We conclude the prove of statement (a) by induction for k. In ([10]) we derived the following recurrent
relation:

Lk = A(Lk−1) +Ae∗Lk−1 +
∑

i+j=k

Li∗Lj .

The first components of all the vectors in Lk equal to zero, hence, Lk(A′) differs from Lk(A) only in the second
component. Taking into account that (0, 1, 0, . . . , 0)t ∈ L2(A) = L2(A′), we obtain

Mk(A) = L0(A) + · · ·+ Lk(A) = Mk(A′) = L0(A′) + · · ·+ Lk(A′)

Statement (b) can be proved analogously.
c) Under the transition from matrix A to A′, the space M ′p does not change, hence, the order conditions in

the form given in Theorem 4.5, for both matrices are satisfied simultaneously.
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Relations (9) for the 2-standard matrix look significantly simpler than for a general matrix. Namely, the
second relation becomes trivial,

Ae ∗ w2 = c2w2 , (11)

since the vector w2 in this case has the only one nonzero component. The first relation can be written as

w3 = c2w2 −
3c2 − 2c3

c2
Aw2 ,

or, equivalently,
(3c2 − 2c3)Aw2 = c2(c2w2 − w3) . (12)

Corollary 4.7. For a 2-standard matrix A coefficients ak1, ak2, ak3 can be expressed in terms of the rest aij
and ci by the following formulas.

ak1 = ck −
k−1∑
i=2

aki ,

ak2 =

(
c2k/2−

k−1∑
i=3

akici

)
/c2 ,

ak3 =

(
c2k(ck − c3)−

k−1∑
i=4

akici(3ci − 2c3)

)
/c23 ,

Corollary 4.8. Let A be a 2-standard matrix.

• If 3c2 6= 2c3, then vectors w2 and w3 are linearly independent and generate the space M ′3, and the vector
Aw2 is expressed in terms of them by the relation (12).

• If 3c2 = 2c3, then w3 = c2w2 and the two-dimensional space M ′3 is generated by vectors w2 = −c22 ·
(0, 1, 0, . . . , 0)t and Aw2 = −c22 · (0, 0, a32, . . . , an2)t.

Let A be an extended matrix of RK methods, satisfying the simplifying assumption D(1). By a suitable
2-transformations one can transform a RK method into a new one of the same order and with c2 = 2/3c3. For
matrices of RK methods with c2 = 2/3c3 we have

w2 = 2A2e −Ae∗Ae = (0,−c22, 0, . . . , 0)t ,
w3 = 3A(Ae∗Ae) −Ae∗Ae∗Ae = (0,−c32, 0, . . . , 0)t ,
Aw2 = −c22(0, 0, a32, . . . , a92)t .

This means that the theory of RK methods can be reduced to the consideration of RK methods with
c2 = 2/3c3.

We note, that all the above results are true under the simplifying assumption D(1) (1) with b2 = 0 and
b3, b4, . . . , bs are not necessarily zero. For many of the known RK methods of high order b2 = b3 = 0. For these
methods, one can expect much stronger results.

Hypothesis 4.9. There is a two-dimensional symmetry group, which is operating on RK methods, satisfying
the conditions b2 = b3 = 0. By means of this symmetry group one can make c2 and c3 equal to any values,
while the remaining ci are unchanged under these transformations.

5 Conclusions

The main results of the present paper are the Corollary 4.7 which allows to express the first three columns
of the Butcher tableau in terms of the others; and the Theorem 4.6, especially statement (c), which allows to
exclude variable (c2) from the list of unknowns.

Hypothesis 4.9 states that substantial progress in the development of RK methods can be made by gener-
alization of the symmetry methods to satisfying the conditions b2 = b3 = 0 and others (further generalizations
are possible too).

Overall, the abstract algebraic approach to the RK methods started by the author in [9, 10] and the present
paper seems to be mathematically “correct“ way to study the RK methods.
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