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Abstract

We propose a novel automatic architecture search algorithm that uses
both pruning connections and adding neurons.

To test the algorithm’s effectiveness we consider two standard problems:

1 The brightness prediction problem, where we need to predict the
brightness of the next point based on previous points within an image;

2 the approximation of the function defining the brightness of a
black-and-white image.

The optimized networks significantly outperform the standard solution for
neural network architectures in both cases: for the same error, we can
have a significantly smaller complexity.

The growing architecture algorithm is a combination of ideas of pruning
and constructing algorithms.

Our architectures do not need to be layered.
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Architecture search approaches
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Approaches to automatic architecture search

Empirical/statistical methods that choose the weights according to
the effect they make on the model’s performance, see, e.g. Benardos
and Vosniakos 2002.

Evolutionary algorithms that start with selecting parent networks,
then proceed with combination and mutations, and selecting the best
ones. See e.g. Benardos and Vosniakos 2007; Koza and Rice 1991;
Miikkulainen et al. 2019.

Pruning methods that start with a larger than necessary multilayer
network and then remove neurons that have little contribution to the
solution. There are several different ways to decide which neuron is
not needed, see e.g. Reed 1993; Mozer and Smolensky 1989; Karnin
1990; LeCun, Denker, and Solla 1990; Castellano, Fanelli, and Pelillo
1997. The known problem is that one usually does not know a priori
how large the original network should be. Also starting with a large
network could be excessively costly to trim the unnecessary units.
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Constructive methods that start with an initial network of small size,
and then incrementally add new hidden neurons and/or hidden layers,
see e.g. surveys Tin-Yau Kwok and Yeung 1997 Lee 2012, and e.g.
papers Ma and K. Khorasani 2003; Ash 1989; Weng and
Khashayar Khorasani 1996; Prechelt 1997; S.E. Fahlman 1990;
Tin-Yau Kwok and Yeung 1996; Tin-Yan Kwok and Yeung 1997;
Shaw et al. 2019.
A known problem is that the size of the obtained multilayer networks
is reasonable but rarely “optimal”.

Cell-based methods create the architecture from a smaller-sized
blocks, see e.g. B. Zoph, Shlens, and Le 2018; Shaw et al. 2019; Wu
et al. 2019.

Ekaterina Shemyakova (w/ Sergei Khashin) (Toledo, USA)Growing networks architecture 5 / 44



Neuronetwork’s complexity

We see the ever-increasing efficiency of neural networks.
At the same time, their complexity is growing.

Here we measure the complexity by the number of weights.

Those who do not work directly with neural networks usually expect the
complexity of the network to be tens, hundreds, at most thousands. In
reality, the complexity of modern neural networks is much higher.

Thus, for the standard MNIST handwritten digit classification problem,
the number of learnable parameters in the best networks is hundreds of
thousands and millions, while there are only 60, 000 training examples
(small square 28× 28 pixel grayscale images of handwritten single digits
between 0 and 9).

Minimization of the network complexity is the goal of our work!
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Realization

Most of our computations are realized in C++ instead of some
conventional package (e.g. Keras/Python). This is because layered
architectures are the main objective of such specialized packages, and
dealing with non-layered ones presents such difficulties that outweigh their
conveniences.

Hardware specification: Intel(R) Pentium(R) CPU G4500 @ 3.50GHz,
32GB and Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz 16 GB.

Software specification: Visual Studio 2019 Community (C++), Python
3.9.5, PyCharm 2022.3.2 Community Edition, Numpy 1.22.4, TensorFlow
2.5.0.
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Neural networks
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Neural networks

Neural networks consist of a graph that together with some other data
implement a nonlinear function f : X → Y .

Figure: Example of a layered architecture from “Sparsity in Deep Learning: Pruning and growth for
efficient inference and training in neural networks” by T. Hoefler et al.

Starting point: Given a training set (dataset), a subset in X × Y , we start
with some f (x ,w) : X → Y , parameterized by weights w ∈ R.
Training for weights: we transform the input (x0 on the picture) layer by
layer to generate the output (l on the picture). This process is called “the
inference”, or “the forward pass”. Training on known (x0, l), we are
searching for the values of w such that f (x ;w) is close to y .
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Finding a suitable network for a given problem consists of two steps:
1. decide on the network structure (architecture),
2. train for the weights.

The network architecture is traditionally designed manually and not
changed during the training process.

Training for the weights starts with picking some weights and applying
f (x ,w) storing the inputs of each layer. The quality is evaluated using a
loss function l : Y × Y → R, l : (y , f (x ;w)) 7→ ε. At each hidden layer,
the “backward pass” uses e.g. a gradient and update the weights using a
“learning rule” to decrease the loss.

We iterate this until we find w such that f (x ;w) provides the desired
accuracy. The accuracy is evaluated on a separate set of examples not
used in training.
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Example: input neurons are packed into a vector x0,
there are two hidden layers, vectors x1, x2, and an output layer, vector x3.
The activation function, e.g., ReLU σ(x) = max(0, x) : Rn → Rn.

Going from the first to the second layer is

x1 = σ(w1x0 + b1) .

The network function is

f (x0;w) = σ(w3σ(w2σ(w1x0 + b1) + b2) + b3) .
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Our architecture growth algorithm general
idea

Ekaterina Shemyakova (w/ Sergei Khashin) (Toledo, USA)Growing networks architecture 12 / 44



Our optimized architecture incorporates pruning enhanced by construction,
thus collectively referred to as “growing”.

The biological motivation is as follows:

“... networks of brain cells tend to be dominated by a small number of
connections that are much stronger than most.” 1

A human brain starts sparse, has an early phase of densification followed by
massive pruning, and then remains at a relatively stable sparsity level. Yet,
even fully-grown brains change up to 40% of their synapses each day. 2

1Palmer, Lynn, Holmes, Nature Physics’24
2 Hawkins 2017
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“Prunning” or “sparsifying” of our architecture can enhance efficiency
without sacrificing accuracy.
Removing neurons ∼ removing rows or columns in the layer weight
matrices;
Removing inputs ∼ removing elements of the matrices.

Figure: Example of a 4-layered architecture
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Our algorithm step-by-step
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Pruning procedure: one synapse removal

Find synapses with relatively low weights. For each neuron, divide all
of its input weights by its maximum input weight. Then, consider all
these numbers collectively for all neurons and select a certain number
(e.g., N1 = 8) of the smallest averaged weights. These will be the
candidates for removal.

For each candidate, compute the value of the current loss function
after its removal.

Select (e.g. N2 = 3) synapses, the removal of which minimally
impacts the loss function.

For each of these N2 synapses, we remove it, and then train the
remaining neural network within a given time. The weights get
adjusted, but we do not modify zeros.

We fix the removal of only one synapse, that yields
the best value for the new loss function.

We repeat the procedure until the loss function increases by no more than
(1 + ε) times, where ε is sufficiently small. In our experiments ε = 0.002.
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Constructing procedure: adding a neuron

1 Add an additional neuron to the beginning of the neural network (in
layer 1/2) and connect it to all input parameters and to all other
neurons of the original network. We lose the layered structure at this
point

2 Assigning weights to the new neuron. Starting with all zero weights
does not work well. Instead, we make
several random weights assigning attempts (from the interval [−1, 1])
(e.g. N3 = 100), and choose the one for which the loss function is the
smallest.

3 Train the new network for some time (longer than before, but also
not for long). As a result, the value of the loss function improves as
we have more options.
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Architecture growing algorithm

We start with an arbitrary architecture and then execute the following
procedure.

1 Remove all redundant connections (synapses) as described above.

2 If the complexity of the network reaches the preset limit, end the
procedure.

3 Add a neuron.

4 Return to step (1).
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Example 1: brightness prediction
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Example 1. Brightness prediction, Data

To illustrate our idea, consider the brightness prediction problem for an
image point knowing the brightness of several previous points (we take
five).

This is needed for image compression algorithms.

The previous points are ordered as shown in the table. Here ∗ is the
current point, and the first column and the first row give the
(x , y)-coordinates of the points relative to ∗. The other numbers in the
table indicate the order in which the points will be considered.

- 2 1 3

4 0 * -

Table: Ordering of the previous five points. Here ∗ is the current point.
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For the experiments, we choose a graphics file of size 682× 512:

Figure: Test image

Every point is characterized as (R,G ,B), R,G ,B ∈ [0, 256). For a
black-and-white picture R = G = B. We will call this number brightness.
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We need to construct a function of five arguments (points numbered
0, 1, 2, 3, 4).
The data can be organized into the following matrix:

∗1 01 11 21 31 41
∗2 02 12 22 32 42
...

Number of rows: 682× 512 (subtract boundary points).

Instead, we can consider a matrix of increments with respect to the second
column (effectively subtract the second column (0i -th) from every column
of the matrix, as a result, we get a matrix with the second zero column
which can be removed). Also, the entries become much smaller.
We also divide all numbers by 255, to make them smaller. Such are
usually better for neural networks (as standard training methods have been
developed to govern such situations).

Now, we need to construct a function of four arguments.
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Example 1, Keras networks

First, we use Keras to build a 3-layer neural network with N1 neurons in
the first hidden layer, with N2 neurons in the second hidden layer, and one
output neuron.

x0,1

x0,2

x0,3

x0,4

x1,1

x1,2

x1,3

x2,1

x2,2

y
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Example 1, Keras networks

Within Keras package (inside Python):
The training method is Adam.
The number of training epochs is 10000. (Divide data into batches, and
for each interaction of the training we are minimizing the loss function
computed only for a specific batch. We go through all batches eventually
as we run more and more iterations. This is a standard trick.)
We choose tanh (hyperbolic tangent) as the activation function.

N1,N2 is the number of neurons in layers 1 and 2.
N par is the total number of parameters.
The loss function S is the sum of squares of increments divided by the
number of points.
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N1 N2 N par loss function

5 5 61 112.4630
7 6 90 104.1467
8 7 111 103.5898
9 7 123 101.0789
8 9 131 97.1992
10 11 183 94.9745
12 11 215 87.9522
12 14 257 86.6209
15 15 331 83.8935
17 17 409 77.1056
20 19 519 70.5793
20 20 541 66.5645
22 22 639 61.8804
25 25 801 60.5896

Every row corresponds to a network built by Keras based on our particular
dataset and for our particular problem. So, the loss function value of 60
means that the absolute error is

√
60 ≈ 7.5. With a bare eye, we cannot

distinguish between 1− 2.
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Compare them with our optimized networks:
As the starting point, we use the simplest Keras’s network, corresponding
to the first row in the table.

Figure: Initial neuronetwork

6 neurons in the 1st and in the 2nd layers.
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Intermediate network:
Neurons numbered 5 to 13 have been added (one at each iteration) as an
extra 1/2 layer.

Figure: In the middle of optimization

6 neurons in the 1st and in the 2nd layers and 9 additional neurons.
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Figure: At the end of optimization

6 neurons in the 1st and in the 2nd layers and 16 additional neurons.
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Comparison of our optimization and Keras:

Loss fun Optimized # of params Keras params Ker/Opt ratio
109.58 79 79 1.00
103.66 68 108 1.59
96.59 93 145 1.56
94.78 106 184 1.74
91.46 113 199 1.76
86.31 138 264 1.91
84.72 149 309 2.07
82.25 153 343 2.24
81.22 166 352 2.12
80.30 178 359 2.02
79.03 189 374 1.98
77.70 202 398 1.97
76.82 211 414 1.96
75.26 230 440 1.91
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Example 2
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Example 2

For visualization, consider the following problem: approximate the same
black-and-white graphics file of size 682× 512 using a function of two
input variables, f (x , y). We start with a 3-layered architecture with two
inputs, N1 neurons in the first layer, N2 neurons in the second layer, and 1
output neuron. Here 4 ≤ N1,N2 ≤ 40.

We initially train the networks using TensorFlow/Keras, and subsequently
optimize them using our approach.

Optimized initial network. Optimized at an intermediate stage.
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Optimization results:

Loss fun Opt params Keras params Keras/opt
0.01685493 37 37 1.00
0.01429114 54 76 1.41
0.01308279 70 109 1.56
0.01283806 80 112 1.40
0.01136803 106 140 1.32
0.01059770 131 165 1.26
0.00958063 176 280 1.59
0.00935498 200 298 1.49
0.00897876 220 455 2.07
0.00870600 241 516 2.14
0.00849940 280 549 1.96
0.00841038 300 564 1.88
0.00828379 327 584 1.79
0.00825470 339 592 1.75

Table: Comparison of our optimization and Keras results
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The approximation is far from perfect.

Figure: Source and approx image
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Example 3
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Example 3. MNIST

Consider the standard task MNIST: 70, 000 pictures of size 28 ∗ 28, which
depict handwritten numbers:

The first 60, 000 is (standardly) used for training, and 10, 000 is used for
testing (against over-training).
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In the starting network, we have input layer |x0| = 28× 28. We build a
usual 3-layer neural network with seven neurons in the first hidden layer,
and seven neurons in the second hidden layer, and ten output neurons
(since this is a classification problem and we have ten digits, if the seventh
number is the largest, then the guess is 7).

The total number of parameters is 5631.

We use Softmax loss function: the output layer y = (y0, . . . , y9), where yi
are some real numbers, usually they stay within [−10, 10]. Construct

zi =
eyi

ey0 + · · ·+ ey9
.

These zi will be all positive and sum up to 1.

l( A︸︷︷︸
correct answer

, y) = − ln(zA)

E.g. let the correct answer be A = 7, and the network correctly returned
y7 >> yi for all other i . Then z7 will be almost 1 and the others will be
very small.
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Standard Keras network:

model = tf.keras.Sequential(

[

tf.keras.layers.Dense(N1, activation = tf.nn.relu,

input_shape=(v_len,)),

tf.keras.layers.Dense(N2, activation = tf.nn.tanh),

tf.keras.layers.Dense(num_classes,

activation="softmax"),

]

)

model.compile(optimizer=tf.keras.optimizers.Adam(),

loss=’sparse_categorical_crossentropy’,

metrics=[’accuracy’])

If we use a standard Keras network, then after training it has 711 errors
(per 10, 000 test images) with 5631 parameters.
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Using our synapse removal algorithm, we removed 2, 749 of synapses, and
the number of errors increased to only 721!!!

That is, with a slight deterioration in quality, we were able to remove 49%
of the synapses.

Thus, with almost no loss of quality, the complexity of the neural network
has almost halved.
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Conclusions

We propose a novel automatic architecture search algorithm.

The algorithm alternates between pruning connections and adding
neurons, without restricting itself to layered networks.

Instead, we search for architectures among arbitrary oriented graphs with
weights (alongside biases and an activation function), allowing for
networks without a layered structure. The objective is to minimize
complexity while maintaining a specified error threshold.

In the examples examined, the complexity (number of connections) of the
optimized neural network is approximately halved compared to the original.
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