All tests in the one archive: tests.zip.
The test is represented by a text file of the form:
#T SHIFTR_0 x,y -> x*2^y комментарий9 3 1536 4 3 48 2 7 28 3 3 24 6 5 320 2 5 20 7 5 640 ...
The first two characters #T are a sign of the test file, the next word is the recommended name of the program you are looking for. The rest of the line is a comment.
Each next line specifies a set of input and output integers parameters of the desired algorithm. Polynoms:
SQUARE.tst x -> x*x SUMSQ2.tst (x,y) -> x^2+x^2 SUMSQD.tst (x1,y1,x2,y2) -> (x2-x1)^2 + (y2-y1)^2 pol1_1.tst Linear: x -> 2*x + -3 pol1_2.tst Linear: x -> -3*x + 4 pol1_3.tst Linear: x -> 1*x + -1 pol1_4.tst Linear: x -> 2*x + -1 pol2_1.tst Quadratic: x -> 2*x^2 + 0*x + 0 pol2_2.tst Quadratic: x -> -3*x^2 + 1*x + 0 pol2_3.tst Quadratic: x -> 1*x^2 + -2*x + 1 pol2_4.tst Quadratic: x -> 4*x^2 + 3*x + 5 pol2d_1.tst Quadratic: x -> (1*x^2 + 1*x + -2)/2 pol2d_2.tst Quadratic: x -> (3*x^2 + 7*x + -1)/5 pol2d_3.tst Quadratic: x -> (2*x^2 + 5*x + -9)/3 pol3_1.tst Cubic: x -> 1*x^3 + 0*x^2 + 0*x + 1 pol3_2.tst Cubic: x -> -2*x^3 + 1*x^2 + 0*x + 3 pol3_3.tst Cubic: x -> 3*x^3 + 2*x^2 + -4*x + 1 pol3_4.tst Cubic: x -> 1*x^3 + -1*x^2 + 1*x + -1 pol3_5.tst Cubic: x -> 1*x^3 + 1*x^2 + -2*x + 2 pol3d_1.tst Cubic: x -> (1*x^3 + 3*x^2 + 2*x + 0)/6 pol3d_2.tst Cubic: x -> (2*x^3 + 2*x^2 + 1*x + 3)/7 pol3d_3.tst Cubic: x -> (1*x^3 + 0*x^2 + -1*x + 4)/8 pol3d_4.tst Cubic: x -> (2*x^3 + -1*x^2 + 3*x + -2)/6 poly1.tst Linear: (a,b,x) -> a*x + b poly2.tst Quadratic: (a,b,c,x) -> a*x*x + b*x +c poly3.tst Qubic: (a,b,c,d,x) -> a*x*x*x + b*x*x +c*x +d nguyen1.tst x -> x^3+x^2+x nguyen2.tst x -> x^4+x^3+x^2+x nguyen3.tst x -> x^5 + x^4+x^3+x^2+x nguyen4.tst x -> x^6 + x^5 + x^4+x^3+x^2+x discr.tst (a,b,c) -> b*b - 4*a*cMaximums (minimums) and sort:
MAX2.tst x,y -> max(x,y) MAX3.tst x,y,z -> max(x,y,z) MIN2.tst x,y -> min(x,y) MIN3.tst x,y,z -> min(x,y,z) SORT2.tst x,y -> sorted SORT2R.tst x,y -> sorted revers SORT3.tst x,y,z -> sorted SORT3R.tst x,y,z > sorted reversGCD, LCD, factorial, ...
GCD_0.tst x,y -> GCD(x,y) simple GCD_1.tst x,y -> GCD(x,y) simple GCD.tst x,y -> GCD(x,y) LCM_0.tst x,y -> LCM(x,y) simple LCM_1.tst x,y -> LCM(x,y) LCM.tst x,y -> LCM(x,y) FACTORIAL_0.tst x -> x! simple FACTORIAL.tst x -> x! ANK.tst x,y -> x!/y! BINOM.tst x,y -> binomial(x,y) BINOM_0.tst x,y -> binomial(x,y) smallNumber theory
DIVIDER.tst x -> min divider(x) DIVIDER_1.tst x -> min divider(x), x >2, x odd DIVIDER_2.tst x -> min divider(x) euclid.tst (x,y) -> d u v, where d=gcd(x,y) and d = u*x + v*y Fibonacci.tst n -> Fibonacci(n) jacobi.tst (x,y) -> jacobi symobol(x, y) mod_ord.tst (x,y) -> order(x) mod y mod_rev.tst (x,y) -> 1/x mod yDecimal and binary digits
digit0.tst lower digit: (x) -> x % 10 digit1.tst (x) -> (x/10) % 10 digit2.tst (x) -> (x/100) % 10 digit3.tst (x) -> (x/1000) % 10 digitH.tst high digit(x) digitK.tst (K, x) -> (x/10^K) % 10 N_One.tst number of binary units in xPowers:
pow2.tst 2^x: (x) -> 2^x pow3.tst 3^x: (x) -> 3^x pow5.tst 5^x: (x) -> 5^x pow7.tst 7^x: (x) -> 7^x pow10.tst 10^x: (x) -> 10^x power.tst x^y: (x,y) -> x^y SHIFTR_0.tst x,y-> x*2^yRounding
log2.tst log[2]: (x) -> log[2](x) log3.tst log[3]: (x) -> log[3](x) log5.tst log[5]: (x) -> log[5](x) log7.tst log[7]: (x) -> log[7](x) sqrt.tst square root: (x) -> sqrt(x)Intervals:
CLIP256.tst smaller 0 we replace 0, greater than 255 by 255 CNV_1251_866.tst coding 1251->866 CNV_866_1251.tst coding 866->1251 IS_DIGIT.tst check for a digit IS_MID.tst x,y,z : x <= y < zOther
ABS.tst x -> |x| carry.tst carry of (x+y) mod 2^32 ODD.tst ?odd SIGN.tst x -> sign(x)