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ON THE FINITE IMAGES
OF SOME ONE-RELATOR GROUPS

D.MOLDAVANSKI, N.SIBYAKOVA

ABSTRACT. It is shown that the group G = (a,b; a~'ba = b*) (k # 0) is determined
in the class of all residually finite one-relator groups by the set of its finite images.

Let F(G) denote the set of all finite homomorphic images of a group G. Also let
Gr(m) be the group with presentation

(a,b; a”tba = b* ™ = 1),

where the integers k # 0 and m > 0 are coprime.

G. Baumslag has noted in [1] that there exist integers k, I, m (e. g. m = 25,
k = 6, I = 11) such that the groups Gi(m) and G;(m) are not isomorphic but
F(Gr(m)) = F(Gi(m)). In fact, the situation is entirely described by the following
statement: F(Gr(m)) = F(Gi(m)) if and only if the cosets k + mZ and | + mZ gen-
erate the same cyclic subgroups of the group Z},, the multiplicative group of integers
relatively prime to m in the ring Z,, of integers modulo m. Moreover, Gi(m) ~ G;(m)
if and only if k +mZ = (I + mZ)*".

The 7if” part of the first assertion as well as the second assertion was proved in [1],
and the ”only if” part of the first assertion was proved in [2].

Any group Gi(m) is a factor group of the one-relator group

Gr = {a,b; a 'ba =b")  (k #£0),
and by contrast with the above result we have
Theorem 1. F(Gy) = F(G)) if and only if k = 1.

Proof. For any integers r > 0 and s > 0 satisfying the condition k" = 1 (mod s) we
define G (r, s) to be the group with presentation

(a,b; a™Yba =b* 0" =1,b° =1).

It is well known that G (r, s) is a finite metacyclic group of order rs. Any element
of Gy (r,s) is uniquely representable in the form a®b® where 0 < a <7, 0< 3 < s. We
notice also that the commutator subgroup of the group Gi(r, s) is the cyclic subgroup
generated by the element b*~!.

Let ¢ be a homomorphism of the group G} into some finite group and let r and s
be the respective orders of the elements ay and by . The relation a~*ba® = b*" which
holds in the group Gy, for all @ > 0 shows that the integers r and s satisfy the condition
k™ =1 (mod s). This implies that any homomorphism of the group Gy into a finite
group passes through some group G(r, s).

In particular we see that if £ # 1 then the group G has a non-abelian finite image.
Therefore if F(Gy) = F(G;) then k = 1 if and only if I = 1, and we can assume in what
follows that the numbers k£ and [ are not equal to 1.

Now we prove two lemmas.
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Lemma 1. If F(Gy) C F(G,) then for every prime p and for any integer t > 0 pt|k—1
implies p*|l — 1.

(Here and everywhere below the notation 7|s will mean that the integer r divides the
integer s. (r,s) denotes the greatest common divisor of r and s.)
To prove this assertion let us write the integers £ and [ in the form

k=1+pu, [=1+p°v,

where 7 > 0, s > 0 and (u,p) = (v,p) = 1. If » > 0 then k» = 1 (mod p)"*! and
we may consider the group Gy (p,p"™1). This group must be an image of the group G,
and, therefore, of some group G;(p™,p"). Since the group Gi(p,p"*!) is non-abelian,
n > s. Hence the commutator subgroup of G;(p™,p"™), generated by the element b,
has the order p* = (p°v,p™). Since the order of the commutator subgroup of the group
Gr(p,p"™1) is equal to p", we must have s > r.

Lemma 2. . Let F(Gi) € F(G)). Then every prime divisor of | divides k.

Proof. Suppose that there is a prime number p such that p|l and p 1 k. Since pt1—1, by
lemma, 1, p{ k — 1. Therefore the group Gr(p — 1, p) is not abelian and its commutator
subgroup is of order p. Any epimorphism ¢ of G; onto G (p—1, p) passes through some
group Gi(r,s) where s is the order of by and therefore (s,l) = 1. Consequently, the
commutator subgroup of Gi(p — 1,p) is generated by the element (b'~!)¢. Hence the
element (bp)!~! is of order p but this is impossible since p|l and (s,1) = 1.

Suppose now that for some integers k and [ the equality F(Gy) = F(Gi) holds. It
follows from lemma 1 that the integers £ —1 and [ — 1 are distinguished at most by sign.
Therefore if £ # [ one must have k +1 = 2. Let Kk = 2"k; and | = 2°]; where r» > 0,
s > 0, and k; and [; are odd. Lemma 2 implies that the integers k£ and [ have the same
prime divisors and therefore, since k +1 = 2, ky,l; = £1. If we assume, without loss of
generality, that r < s, then the equality 2"(k; +2°7"1y) = 2 implies r = 0 or r = 1. If
r = 0 then s = r because the integer k; + 2°7"]; must be even. Hence k; =[; = 1, and
sok =1. Let r = 1. Then k; +2°"'l; = 1 and therefore k; = —1,1; = 1 and s = 2. Thus
in this case k = —2, [ = 4. Consequently, it remains to show that F(G_2) # F(G4).

To do this, we shall show that if the elements f and g of the group G4(2,5) satisfy
the condition f~1gf = g2 then g = 1.

Let these elements be written in the form

f=a"", g=a0<a,v<2, 0<83,8<5).
By factorisation of the group G4(2,5) by the subgroup generated by the element b
the equality f~'gf = ¢~ 2 becomes a®’ = 1, and we must have v = 0. Therefore
fLgf =bPaba*b? = 4" and ¢g=2 = b=29. Thus
0(4*+2)=0 (mod 5)
and it follows that 6 = 0. The proof of Theorem 1 is completed.
It is worthwhile to make some additional remarks. At first, what can one say about

an one-relator group G such that F(G) = F(Gg)? In the general case the answer is
unknown but the question can be easily answered when G is residually finite.
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Corollary. If G is a residually finite one-relator group and if for some integer k
F(G) = F(Gg), then G ~ GY,.

To prove this, it is enough to notice that the group G and therefore all groups in
F(Gy) are metabelian. Consequently, G is metabelian since G is a subdirect product of
the family F(G) = F(Gy). Since G is not cyclic, by [3] G is isomorphic to some group
G;. From Theorem 1 it follows that [ = k.

Following [4], we denote by oG the sequence whose nth term, 0,G, is the number of
subgroups of index n of a group G. It turns out that for any finitely generated groups
G and H F(G) = F(H) implies cG = o H.

Indeed, if N is a normal subgroup of G then for any number n > 1 we have o,,G >
0,(G/N), equality holding if and only if all subgroups of index n of G contain N. Since
the group G is finitely generated, it contains only a finite number of subgroups of index
n and therefore their intersection U, is a subgroup of finite index of G. Consequently
the quotient group G/U,, is isomorphic to some H/N and therefore

onH > 0,(H/N) = 0,(G/U,) = 0,G.

The next result and Theorem 1 show in particular that the converse of the above
statement, is false.

Theorem 2. For any integer n > 1 0,(Gy) is the sum of all positive divisors of n that
are coprime with k, and 0,(Gr(m)) is the sum of all positive common divisors of m
and n.

We give now a sketch of the proof of Theorem 2. Let H(p,q,r) be the subgroup of
G generated by two elements aPb” and b?, where p > 0, ¢ > 0 and q is coprime with k.
The following assertions can be easily verified and produce the required proof:

1) Every subgroup of finite index of G}, coincides with some H (p, q,7);

2) [Gr - H(p,q,7)] = pg;

3) H(p1,q1,71) = H(p2,go,72) if and only if py = ps, 1 = g2 and r; =1y (mod g);;

4) The subgroup H(p,q,r) contains the normal closure in G}, of the element b if
and only if ¢ divides m.

It can also be shown that the subgroup H(p,q,r) of the group Gy is isomorphic to
the group Gy, where | = kP. Thus Theorem 1 shows the existence of two groups, G' and
H, having isomorphic normal subgroups A and B of finite index such that G/A ~ H/B
and F(G) # F(H).

Finally, we want to mention the question of the existence of an infinite family of
one-relator groups which are not isomorphic in pairs and have the same finite images.
One example of such a family is prompted by a note of G. Baumslag [5]. Let H,, be
the group with presentation

{a,b; a~™b 1a™ba""ba™ = b?) (m > 0).

It is shown in [5] that F(H;) coincides with F(Z), the set of all finite cyclic groups, and
the same arguments show the validity of the equality F(H,,) = F(Z) for any m > 0.
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The normal closure N,, of the element b in H,, is the unique invariant subgroup of
H,, whose quotient is infinite cyclic. The group N,, is the free product of m freely
indecomposable groups. Therefore the groups H,, and H,, are not isomorphic if m # n.
Nevertheless the groups H,, are not residually finite. The problem of the existence of
an analogous family of residually finite one-relator groups is still open.
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