УДК 517.977

Б. Я. Солон¹

Степени перечислимости множеств с тотальными дополнениями

Ключевые слова: сводимость по перечислимости, степень перечисления, тотальная е-степень, ко-тотальная е-степень.

Эта статья продолжает изучение локальных свойств степеней перечислимости, содержащих множества с тотальными дополнениями. Такие е-степени называются кототальными.

Key words: enumeration reducibility, degree of enumerability, total e-degree, co-total e-degree.

This paper continues the study of the local properties of the enumeration degrees containing sets the complements of which are the graphs of some total functions. Such e-degrees are called co-total.

Мы будем использовать понятия и терминологию, которые приняты в монографии [6]. Пусть ω обозначает множество натуральных чисел; A, B, \ldots, X, Y (с индексами или без) – подмножества ω ; $\overline{A} = \omega - A$; $c_A(x) = \{(x,1): x \in A\} \cup \{(x,0): x \notin A\}$ – это характеристическая функция множества A. Мы будем обозначать через $A \oplus B = \{2x: x \in A\} \cup \{2x+1: x \in B\}$ сочленение множеств A и B. Пусть, как обычно, D_u – конечное множество с каноническим индексом u; $\langle x, y \rangle$ – канторовский номер упорядоченной пары (x,y). Если z – канторовский номер пары (x,y), то пусть $\langle z \rangle_1 = x$ и $\langle z \rangle_2 = y$. Пусть также $\langle A \rangle_1 = \{x: \exists y(\langle x, y \rangle \in A)\}$ и $\langle A \rangle_2 = \{y: \exists x(\langle x, y \rangle \in A)\}$. Пусть W_t – вычислимо перечислимое (в.п.) множество с в.п. индексом t, $K = \{t: t \in W_t\}$ и $K_0 = \{\langle x, t \rangle: x \in W_t\}$. Далее символ D будет использоваться только как переменная для конечных множеств.

Для данной частичной функции $\alpha: \omega \to \omega$ пусть $\operatorname{dom}(\alpha)$, $\operatorname{ran}(\alpha)$ и $\operatorname{graph}(\alpha) = \{\langle x, \alpha(x) \rangle : x \in \operatorname{dom}(\alpha) \}$ область определения, множество значений и график α , соответственно. Для данных частичных функций α и β через $\alpha \oplus \beta$ обозначим сочленение функций α и β , такое, что $\operatorname{dom}(\alpha \oplus \beta) = \operatorname{dom}(\alpha) \oplus \operatorname{dom}(\beta)$, если $x \in \operatorname{dom}(\alpha \oplus \beta)$ — четное, то $\alpha \oplus \beta(x) = \alpha(\frac{x}{2})$ и x — нечетное, то $\alpha \oplus \beta(x) = \beta(\frac{x-1}{2})$. Мы ограничим использование символов f, g, h только для обозначения momanьных функ-

[©] Солон Б. Я., 2013

¹Ивановский государственный университет; E-mail: bysolon@gmail.com

ций, т. е. таких, что $\text{dom} f = \omega$. Если $\text{graph}(\alpha) \subseteq \text{graph}(\beta)$, то мы будем писать $\alpha \subseteq \beta$ для краткости. Множество A называется однозначным, если $A = \text{graph}(\alpha)$ для некоторой частичной функции α . Обозначим через \mathbf{SVS} класс всех однозначных множеств. Мы будем отождествлять функции с их графиками. Для краткости мы будем также писать \overline{f} вместо $\overline{\text{graph}(f)}$.

Напомним [6], что $A \leq_e B$ (A сводимо по перечислимости κ B или A e-сводимо κ B), если существует равномерный алгоритм для перечисления A по любому данному перечислению B. Формально,

$$A \leq_e B \iff (\exists t)(\forall x)[x \in A \iff (\exists u)[\langle x, u \rangle \in W_t \& D_u \subseteq B]].$$

Следуя МакИвойю [3], мы определим оператор скачка ' на \mathbf{D}_e . Пусть $K_A = \{x : x \in \Phi_x(A)\}$ и $\mathbf{J}(A) = K_A \oplus \bar{K}_A$. Ясно, что $\mathbf{J}(A) \equiv_e A \oplus \bar{K}_A$. Пусть $\mathbf{a}' = (\deg_e(A))' = \deg_e(\mathbf{J}(A))$.

Е-степень называется momanьнoй, если она содержит график некоторой тотальной функции. Ясно, что е-степень **a** тотальна тогда и только тогда, когда она содержит множество A, такое, что $A \equiv_e A \oplus \overline{A}$. Обозначим через **T** частично упорядоченное множество всех тотальных е-степеней. Так как для любых A и B

$$A \leq_T B \iff A \oplus \overline{A} \leq_e B \oplus \overline{B},$$

поэтому существует изоморфизм между \mathbf{D}_T и \mathbf{T} .

Ю. Медведев анонсировал в [4], что существует не в.п. множество A, такое, что

$$(\forall f)[f \leq_e A \Rightarrow f$$
 – вычислимая функция].

В монографии X. Роджерса [6, с. 280] этот результат был доказан следующим образам:

$$(\exists \alpha)[\alpha$$
 – не ч.в.функция & $(\forall f)[f \leq_e \alpha \to f$ – вычислимая функция]].

Ясно, что е-степень $\deg_e(\operatorname{graph}(\alpha))$ не является тотальной, т. е. она *нето- тальна*. Следовательно, $\mathbf{D}_e - \mathbf{T} \neq \emptyset$. Дж. Кейс [1] назвал Медведевские множества *квазиминимальными* и их степени *квазиминимальными е-степенями*.

Одна из релятивизаций понятия квазиминимальности известна как **с**-квазиминимальность. Множество A называется C-квазиминимальным (и е-степень $\mathbf{a} - \mathbf{c}$ -квазиминимальной), если $C <_e A$ и $(\forall f)[f \le_e A \to f \le_e C]$. Существование \mathbf{c} -квазиминимальных е-степеней для любой $\mathbf{c} \in \mathbf{D}_e$ можно получить из доказательства теоремы Медведева в [4].

Теперь введем понятие ко-тотальной е-степени. Впервые понятие ко-тотальной е-степени рассмотрено в статье [5].

Определение 1. E-степень $\deg_e(A)$ называется ко-тотальной, если $\deg_e(\overline{A}) \in \mathbf{T}$.

Ясно, что $\deg_e(\overline{f})$ – ко-тотальная е-степень для любой тотальной функции f. Существуют ли ко-тотальные е-степени, не содержащие множеств вида \overline{h} для любой тотальной функции h – вопрос, который до настоящего времени остается открытым.

Обозначим через **CT** множество всех ко-тотальных е-степеней. Так как каждая тотальная е-степень **a** содержит множество A, такое, что $A \equiv_e \overline{A}$, поэтому каждая тотальная е-степнь является ко-тотальной, т. е. $\mathbf{T} \subseteq \mathbf{CT}$. Легко увидеть, что $\Pi_1^0 \subseteq \mathbf{CT}$ и $\mathbf{CT} \cap \Pi_2^0 \subseteq \Delta_2^0$. Следующая теорема по-казывает, что каждая тотальная е-степень является е-степенью дополнения множества, принадлежащего некоторой нетотальной ко-тотальной е-степени. Другими словами, доказано, что $\mathbf{T} \subset \mathbf{CT}$, в более сильной форме.

Теорема 1. Для каждой тотальной е-степени $\mathbf{a} \geq \mathbf{0}'_e$ существует ко-тотальная квазиминимальная е-степень $\mathbf{b} = \deg_e(B)$, такая, что $\deg_e(\overline{B}) = \mathbf{a}$.

<u>Доказательство</u>. Пусть $\mathbf{a} \geq \mathbf{0}'_e$, A – ретрассируемое множество и $\{a_s\}_{s\in\omega}$ – прямой пересчет A. С помощью пошаговой конструкции построим функцию f, которая вычислима относительно A и такая, что $\mathrm{ran}(f) = A$ и $\deg_e(\overline{f})$ является квазиминимальной е-степенью. Если f будет удовлетворять перечисленным выше требованиям, то пусть $B = \overline{f}$. Тогда $\mathbf{b} = \deg_e(B)$ – ко-тотальная квазиминимальная е-степень и $\overline{B} = \mathrm{graph}(f) \equiv_e A$.

На шаге t+1 обозначим через f_t конечный начальный сегмент функции f, который был построен к концу шага t. Пусть $l_t = 1 + \max \operatorname{dom}(f_t)$. В дальнейшем символ σ будет использоваться как переменная для конечных начальных A-сегментов (т. е. таких, что $\operatorname{ran}(\sigma) \subset A$).

Начало конструкции.

Шаг 0. Полагаем $f_0 = \emptyset$ и $l_0 = 0$.

Шаг 2s+1. Пусть t=2s. Проверяем выполнимость условия

$$(\exists D)[\Phi_s(D) \notin \mathbf{SVS}] \tag{1}$$

Если (1) выполнено, то пусть D^* – это D, которое удовлетворяет (1) и имеет наименьший канонический индекс. В этом случае мы имеем два подслучая:

$$(\exists \mathbf{\sigma})[f_t \subset \mathbf{\sigma} \& \langle D^* \rangle_1 \subseteq \mathrm{dom}(\mathbf{\sigma}) \& \Phi_s(\overline{\mathbf{\sigma}}) \in \mathbf{SVS}]$$
 (2)

Если (2) выполнено, то пусть σ^* – это A-сегмент σ , такой, что он удовлетворяет условию (2) и его график имеет наименьший канонический индекс. Полагаем $f_{t+1} = \sigma^*$.

Если условие (2) не выполнено, тогда мы имеем

$$(\forall \mathbf{\sigma})[f_t \subset \mathbf{\sigma} \& \langle D^* \rangle_1 \subseteq \mathrm{dom}(\mathbf{\sigma}) \Rightarrow \Phi_s(\overline{\mathbf{\sigma}}) \notin \mathbf{SVS}]$$
 (3)

Пусть σ^* такой начальный A-сегменте σ , что его график имеет наименьший канонический индекс и он удовлетворяет следующему условию

$$f_t \subset \sigma \& \langle D^* \rangle_1 \subseteq \text{dom}(\sigma) \& D^* \subseteq \text{dom}(\sigma) \times \omega - \sigma.$$

Полагаем $f_{t+1} = \sigma^*$.

Если условие (1) не выполнено, то полагаем $f_{t+1} = f_t$ и переходим к следующему шагу.

Шаг 2s+2. Пусть t = 2s + 1. Полагаем $f_{t+1} = f_t \cup \{(l_t, a_s)\}$.

Конец конструкции.

Пусть $f = \bigcup_{t \in \omega} f_t$. Докажем, что функция f, полученная в результате конструкции, удовлетворяет теореме. Конструкция такова, что все шаги 2s+1 вычислимы в $\overline{K_0} \oplus A$, и все шаги 2s+2, $s \in \omega$, вычислимы в A. Так как $\mathbf{a} \geq \mathbf{0}'_e$, то наша конструкция в целом вычислима в A, следовательно, $f \leq_e A$. Из описания конструкции мы видим, что $\mathrm{ran}(f) = A$, следовательно, $A \leq_e f$.

Пусть тотальная функция $g \leq_e \overline{f}$ и $g = \Phi_{s_0}(\overline{f})$ для некоторого s_0 . Рассмотрим шаг $2s_0+1$, пусть $t_0=2s_0$. Если на этом шаге условие (1) не выполнено, тогда мы имели

$$(\forall D)[\Phi_{s_0}(D) \in \mathbf{SVS}],$$

и тогда $\Phi_{s_0}(\mathbf{\omega})$ – однозначное множество. Ясно, что $g = \Phi_{s_0}(\overline{f}) \subseteq \Phi_{s_0}(\mathbf{\omega})$ и $g = \Phi_{s_0}(\mathbf{\omega})$ в силу тотальности функции g. Следовательно, graph(g) в.п. и g – вычислимая функция.

Если условие (1) выполнено, тогда на подслучае (2) мы имели $\Phi_{s_0}(\overline{f_{t_0+1}})$ – однозначное множество. Так как $\overline{f}\subseteq\overline{f_{t_0+1}}$, то

$$g = \Phi_{s_0}(\overline{f}) \subseteq \Phi_{s_0}(\overline{f_{t_0+1}}),$$

и тогда $g = \Phi_{s_0}(\overline{f_{t_0+1}})$. Следовательно, g – вычислимая функция.

Предположим, что имел место подслучай (3). Тогда мы добъемся того, чтобы множество $\Phi_{s_0}(D^*)$ стало неоднозначным, где $D^*\subseteq \overline{f_{t_0+1}}$ и $\langle D^*\rangle_1\subseteq \mathrm{dom}(f_{t_0+1})$. Тогда $g=\Phi_{s_0}(\overline{f})$ – неоднозначное множество, что противоречит предположению. Следовательно, $\deg_e(\overline{f})$ – квазиминимальная е-степень и теорема полностью доказана.

Следующая теорема усиливает теорему МакИвойя [3], которая утверждает, что для каждой тотальной е-степени $\mathbf{b} \geq \mathbf{0}'_e$ существует квазиминимальная е-степень \mathbf{a} , такая, что $\mathbf{a}' = \mathbf{b}$.

Теорема 2. Пусть ${\bf c}$ — тотальная е-степень u ${\bf b}$ \geq ${\bf c}'_e$ — также тотальная е-степнь, тогда существует ко-тотальная ${\bf c}$ -квазиминимальная е-степень ${\bf a}$, такая, что ${\bf a}'={\bf b}$.

<u>Доказательство</u>. Пусть множество $B \in \mathbf{b}$, такое, что $B \equiv_e c_B$ и $C \in \mathbf{c}$, такое, что $C \equiv_e c_C$. Построим с помощью пошаговой конструкции функцию f, которая удовлетворяет требованиям:

$$(CQ)_s$$
: $(\forall s)[\overline{f} \neq \Phi_s(C)] \& (\forall g)[g \leq_e \overline{f} \Rightarrow g \leq_e C],$
(J): $\mathbf{J}(\overline{f}) \equiv_e B.$

Заметим, что тотальная функция f, удовлетворяющая требованиям $(CQ)_s$, $s \in \mathbf{\omega}$, была ранее построена в [2] с помощью сложной приоритетной конструкции для $C = \emptyset$. Здесь предложена простая интервальная конструкция, с помощью которой мы строим тотальную функцию f, удовлетворяющую требованиям $(CQ)_s$, $s \in \mathbf{\omega}$ и (J). Функция f будет иметь вид $f = c_C \oplus h$, а требуемая в теореме е-степень \mathbf{a} – иметь вид $\mathbf{a} = \deg_e(\overline{f})$.

На шаге t+1 мы обозначаем через h_t конечный начальный сегмент функции h, который был построен к концу шага t. Пусть $l_t=1+\max\operatorname{dom}(h_t)$. В дальнейшем символ σ используется как переменная для конечных начальных сегментов.

Начало конструкции.

Шаг 0. Полагаем $h_0 = \emptyset$ и $l_0 = 0$.

Шаг 4s+1. Пусть t=4s. Проверим выполнимость условия

$$(\exists y)[\langle 2l_t + 1, y \rangle \in \Phi_s(C)] \tag{4}$$

Если (4) выполнено, то полагаем $h_{t+1} = h_t \cup \{(l_t, y^*)\}$, где y^* – наименьшее y, удовлетворяющее (4). Если (4) не выполнено, т. е. $(\forall y)[\langle 2l_t+1, y\rangle \notin \Phi_s(C)]$, то полагаем $h_{t+1} = h_t \cup \{(l_t, 0)\}$ и переходим к следующему шагу.

Шаг 4s+2. Пусть t=4s+1. Проверим выполнимость условия

$$(\exists D)[\langle D \rangle_1 \subseteq \emptyset \oplus \mathbf{\omega} \& \Phi_s(\overline{c_C} \oplus D) \notin \mathbf{SVS}]$$
 (5)

Если (5) выполнено, то пусть D^* – конечное множество D, которое удовлетворяет (5) имеет наименьший канонический индекс. В этом случае

возможны два подслучая:

$$(\exists \mathbf{\sigma})[h_t \subset \mathbf{\sigma} \& \langle D^* \rangle_1 \subseteq \text{dom}(\mathbf{\sigma}) \& \Phi_s(\overline{c_C \oplus \mathbf{\sigma}}) \in \mathbf{SVS}]$$
 (6)

Если (6) выполнено, то пусть σ^* начальный сегмент σ , такой, что он удовлетворяет (6) и его график имеет наименьший канонический индекс. Полагаем $h_{t+1} = \sigma^*$.

Если (6) не выполнено, тогда мы имеем

$$(\forall \mathbf{\sigma})[h_t \subset \mathbf{\sigma} \& \langle D^* \rangle_1 \subseteq \text{dom}(\mathbf{\sigma}) \Rightarrow \Phi_s(\overline{c_C \oplus \mathbf{\sigma}}) \notin \mathbf{SVS}]$$
 (7)

Пусть σ^* – такой начальный сегмент σ , что его график имеет наименьший канонический индекс и он удовлетворяет следующему условию

$$h_t \subset \sigma \& \langle D^* \rangle_1 \subseteq \operatorname{dom}(\sigma) \& D^* \subseteq c_C \oplus \operatorname{dom}(\sigma) \times \omega - \sigma.$$

Полагаем $h_{t+1} = \sigma^*$.

Если (5) не выполнено, то полагаем $h_{t+1} = h_t$ и мы переходим к следующему шагу.

Шаг 4s+3. Let t=4s+2. Проверим выполнимость условия

$$(\exists \sigma)[h_t \subset \sigma \& s \in \Phi_s(\overline{c_C \oplus \sigma})] \tag{8}$$

Если (8) выполнено, то пусть $D^* \subset \overline{c_C \oplus \sigma}$ – конечное множество с наименьшим каноническим индексом, такое, что $s \in \Phi_s(D^*)$. Полагаем $h_{t+1} = \sigma^*$, где σ^* , такой, что его график имеет наименьший канонический индекс, он удовлетворяет условию (8) и $\langle D^* \rangle_1 \subset \operatorname{dom}(\sigma^*)$. Если (8) не выполнено, тогда полагаем $h_{t+1} = h_t$ и переходим к следующему шагу.

Шаг 4s+4. Пусть t = 4s + 3, полагаем

$$h_{t+1} = h_t \cup \{(l_t, 1 - c_B(s))\}\$$

и переходим к следующему шагу.

Конец конструкции. Пусть $=\bigcup_{t\in\omega}h_t$ и $f=c_C\oplus h$. Теперь докажем, что функция f, полученная в результате из описанной конструкции, удовлетворяет требованиям $(CQ)_s$ и (J).

Шаги 4s+1, $s \in \mathbf{\omega}$ обеспечивают $\overline{f} \neq \Phi_s(C)$. Пусть тотальная функция $g \leq_e \overline{f}$ и $g = \Phi_{s_0}(\overline{f})$ для некоторого s_0 . Рассмотрим шаг $4s_0+2$, пусть $t_0 = 4s_0+1$. Докажем, что на этом шаге (вместе с предыдущим) было удовлетворено требование $(CQ)_{s_0}$.

Если на этом шаге условие (5) не выполнено, тогда мы имеем

$$(\forall D)[\langle D \rangle_1 \subseteq \emptyset \oplus \omega \Rightarrow \Phi_{so}(\overline{c_C} \oplus D) \in \mathbf{SVS}],$$

тогда $\Phi_{s_0}(\overline{c_C} \oplus \mathbf{\omega})$ — однозначное множество. Тогда ясно, что $g \leq_e C$. В самом деле,

$$\overline{f} \subseteq \overline{c_C} \oplus \omega \Rightarrow g = \Phi_{s_0}(\overline{f}) \subseteq \Phi_{s_0}(\overline{c_C} \oplus \omega).$$

Так как $\Phi_{s_0}(\overline{c_C} \oplus \mathbf{\omega})$ – однозначное множество, то $g = \Phi_{s_0}(\overline{c_C} \oplus \mathbf{\omega})$. В этом случае имеем $g = \Phi_{s_0}(\overline{c_C} \oplus \mathbf{\omega}) \leq_e \overline{c_C}$. Так как, по условию, $C \equiv_e c_C$ и очевидно, что $\overline{c_C} \leq_e c_C$, то $g \leq_e C$.

Если условие (5) выполнено, тогда для подслучая (6) мы имеем, что

$$\Phi_{s_0}(\overline{f_{t_0+1}}) = \Phi_{s_0}(\overline{c \oplus h_{t_0+1}})$$

и оба – однозначны. Так как $\overline{f} \subseteq \overline{f_{t_0+1}}$, тогда

$$g = \Phi_{s_0}(\overline{f}) = \Phi_{s_0}(\overline{c_C \oplus h_{t_0+1}}).$$

Следовательно, $g \leq_e C$.

Предположим теперь, что имеет место подслучай (7). Тогда мы добиваемся, чтобы $\Phi_{s_0}(\overline{c_C \oplus h_{t_0+1}})$ не было однозначным множеством. Тогда $g = \Phi_{s_0}(\overline{f})$ – неоднозначное множество, что противоречит предположению. В этом случае требование $(CQ)_{s_0}$ удовлетворено.

Наша конструкция обеспечивает то, что все шаги $4s+1,\ 4s+2,\ 4s+3,\ s\in \pmb{\omega}$ вычислимы в $\mathbf{c}',\$ а шаги $4s+4,\ s\in \pmb{\omega}$ вычислимы в C. Так как $\mathbf{c}'\leq \mathbf{b},$ поэтому наша конструкция вцелом вычислима в B, следовательно, $f\leq_e B.$

Из шагов 4s+3 следует

$$(\forall x)[x \in \Phi_x(\overline{f}) \iff h_{4x+3} \neq h_{4x+2}],$$

откуда $\mathbf{J}(\overline{f}) \leq_e B$.

Чтобы проверить $B \leq_e \mathbf{J}(\overline{f})$, покажем, что последовательность функций $\{c_C \oplus h_t\}_{t \in \omega}$ и, следовательно, последовательность множеств $\{\overline{f_t}\}_{t \in \omega}$ вычислима в $\mathbf{J}(\overline{f})$. Тогда $\lambda x.c_B(x) = 1 - f_{4x+4}(l_x)$, следовательно, $B \leq_e \mathbf{J}(\overline{f})$. Ясно, что $\overline{f} \leq_e \mathbf{J}(\overline{f})$. Все шаги вида 4s+4, $s \in \omega$ вычислимы в \mathbf{c}' , и на шагах 4s+4, $s \in \omega$ мы выполняли операцию

$$f_{4s+4} = f_{4s+3} \cup \{(l_{4s+3}, 1 - c_{\overline{f}}(l_{4s+3}))\},$$

которая вычислима в \overline{f} . Следовательно, $\mathbf{J}(\overline{f}) \equiv_e B$ и требование (J) удовлетворено.

Пусть $\mathbf{a} = \deg_e(f)$. Наша конструкция и удовлетворенные требования $(CQ)_s$ обеспечивают, что $\mathbf{a} - \mathbf{c}$ -квазиминимальная, ко-тотальная е-степень, а удовлетворенное требование (J) обеспечивает, что $\mathbf{a}' = \mathbf{b}$.

Список литературы

- 1. Case J. Enumeration reducibility and partial degreees // Annals Math. Logic. 1971. Vol. 2. P. 419–439.
- 2. $Gutteridge\ L.$ Some results on e-reducibility // Ph. D. Diss. 1971.
- 3. McEvoy~K. Jumps of quasi-minimal enumeration degrees // J. Symb. Logic. 1985. Vol. 50. P. 839–848.
- 4. *Медведев Ю. Т.* Степени трудности массовых проблем // ДАН СССР. 1955. Вып. 104. С. 501-504.
- 5. Солон Б. Я. Тотальные и ко-тотальные степени перечислимости // Известия высших учебных заведений "Математика". 2005. Вып. 9 (520). С. 60–68.
- 6. Rogers H., Jr. Theory of Recursive Functions and Effective Computability. New York: McGraw-Hill. 1967.

Поступила в редакцию 27.05.2013.