УДК 004.056.5

В. М. Деундяк 1 , А. В. Лукин 2

Об одной комбинаторной задаче из теории проекционных методов решения уравнений дискретной свертки

Ключевые слова: проекционные методы, дискретные свертки, локальный метод.

В связи с разработкой проекционных методов для n-мерных дискретных сверток А. В. Козаком и И. Б. Симоненко определено двупараметрическое семейство базовых множеств $\mathfrak{M}(r,R)$. В настоящей работе разработан алгоритм построения конечного множества из этого семейства для n=2.

Keywords: projection methods, discrete convolutions, local method.

Investigating projection methods for the solution of n-dimensional discrete convolution equations, A. V. Kozak and I. B. Simonenko presented two-parameter family $\mathfrak{M}(r,R)$ of basic sets. In this work, we investigate an algorithm of constructing of the finite set from $\mathfrak{M}(r,R)$ in the case n=2.

1. Введение и постановка задачи

Теория проекционных методов для одномерных операторов Винера-Хопфа построена в [1]. В работе [2] А. В. Козак на основе модификации локального метода И. Б. Симоненко (см. [4]) разработал теорию проекционных методов решения многомерных уравнений обобщенной континуальной свертки. В частности, в [2] показано, что если A — обратимый оператор многомерной обобщенной континуальной свертки, то для содержащего начало координат открытого ограниченного подмножества $M(\subset \mathbb{R}^n)$ с C^1 -гладкой границей можно построить систему множеств τM и к A применить проекционный метод по системе проекторов $P_{\tau M}$, где $P_{\tau M}$ — oneратор умножения на характеристическую функцию области τM . В работе А. В. Козака и И. Б. Симоненко [3] получен аналог этого результата для многомерных дискретных сверток. Для этого в [3] введено семейство $\mathfrak{M}(r,R)$ подмножеств множества \mathbb{Z}^n , где \mathbb{Z}^n-n -мерная дискретная решетка в \mathbb{R}^n , и показано, что вместо вышеописанной области M в качестве базового множества для проекционного метода можно выбирать элементы из $\mathfrak{M}(r,R)$.

Приведем определение $\mathfrak{M}(r,R)$. Через $\mathbf{B}(X,r)$ будем обозначать открытый шар радиуса r с центром в точке $X(\in \mathbb{R}^n)$. Подмножество $\Pi \subset \mathbb{Z}^n$

¹Южный федеральный университет; E-mail: vlade@math.rsu.ru.

²Южный федеральный университет; E-mail: aleksandr.lukin@rambler.ru.

[©] Деундяк В. М., Лукин А. В., 2011

будем называть каноническим дискретным полупространством, если множество Π и его дополнение замкнуты относительно сложения. Сдвиг канонического дискретного полупространства на целочисленный вектор будем называть дискретным полупространством. Пусть r, R — положительные действительные числа. Через $\mathfrak{M}(r)$ обозначим семейство подмножеств $M \subset \mathbb{Z}^n$, удовлетворяющих условию: для любой точки $X \in \mathbb{R}^n$ существует дискретное полупространство или пространство Π такое, что

$$M \cap \mathbf{B}(X,r) = \Pi \cap \mathbf{B}(X,r). \tag{1}$$

Семейство множеств $M \in \mathfrak{M}(r)$, для которых выполняется условие

$$M \supset \mathbf{B}(0,R) \cap \mathbb{Z}^n$$
,

обозначим через $\mathfrak{M}(r,R)$.

Для эффективного применения проекционных методов важно наличие алгоритмов построения конечных множеств, принадлежащих семейству $\mathfrak{M}(r,R)$. Однако в работе [3] для n>2 существование конечных множеств из $\mathfrak{M}(r,R)$ не доказано, а для n=2 в форме замечания указано, что в качестве конечного множества из $\mathfrak{M}(r,R)$ можно взять пересечение \mathbb{Z}^2 с достаточно большим выпуклым открытым многоугольником с целочисленными вершинами, все углы которого близки к π . В настоящей работе для n=2 доказана теорема, устанавливающая связь параметра r с углами подобного многоугольника, и разработан алгоритм построения конечного множества из $\mathfrak{M}(r,R)$.

2. Геометрическая теорема

Пусть $A,\ B,\ S(\in\mathbb{R}^2)$ — произвольные, не совпадающие между собой точки. Введем необходимые обозначения. Символом AB обозначим отрезок, соединяющий точки A и B; символом l(A,B) — прямую, проходящую через точки A и B; символом $\vec{l}(A,B)$ — луч с началом в точке A, проходящий через точку B. Под |AB| будем понимать длину отрезка AB. Пусть $\angle ASB$ — угол с вершиной в точке S, который получается при повороте от луча $\vec{l}(S,A)$ к лучу $\vec{l}(S,B)$ в положительном направлении. Обозначим через $|\angle ASB|$ величину угла $\angle ASB$. Будем обозначать через $\angle \mathring{A}BC$, $\angle AB\mathring{C}$, $\angle \mathring{A}B\mathring{C}$ следующие множества:

$$\angle \mathring{A}BC \stackrel{\text{def}}{=} \angle ABC \setminus \vec{l}(B,A); \quad \angle AB\mathring{C} \stackrel{\text{def}}{=} \angle ABC \setminus \vec{l}(B,C);$$
$$\angle \mathring{A}B\mathring{C} \stackrel{\text{def}}{=} \angle ABC \setminus (\vec{l}(B,A) \cup \vec{l}(B,C)).$$

Пусть $A,\ B(\in\mathbb{R}^2),\ S(\in\mathbb{Z}^2)$ — произвольные, не совпадающие между собой точки. Дискретным углом $\angle ASB_{\mathbb{Z}}$ назовем множество

$$\angle ASB_{\mathbb{Z}} \stackrel{\text{def}}{=} \angle ASB \cap \mathbb{Z}^2.$$

Будем обозначать через $\angle \mathring{A}BC_{\mathbb{Z}}$, $\angle AB\mathring{C}_{\mathbb{Z}}$, $\angle \mathring{A}B\mathring{C}_{\mathbb{Z}}$ следующие множества:

$$\angle \mathring{A}BC_{\mathbb{Z}} \stackrel{\text{def}}{=} \angle \mathring{A}BC \cap \mathbb{Z}^2, \quad \angle AB\mathring{C}_{\mathbb{Z}} \stackrel{\text{def}}{=} \angle AB\mathring{C} \cap \mathbb{Z}^2, \quad \angle \mathring{A}B\mathring{C}_{\mathbb{Z}} \stackrel{\text{def}}{=} \angle \mathring{A}B\mathring{C} \cap \mathbb{Z}^2.$$

В дальнейшем будем рассматривать углы, величины которых принадлежат интервалу $(0,2\pi)$.

Теорема. Зафиксируем произвольное действительное число r(>1) и точки $S \in \mathbb{Z}^2$, A, B, $D \in \mathbf{B}(S,r) \cap \mathbb{Z}^2$ так, что $B \notin l(S,A)$, точка D симметрична точке B относительно S, и выполняется условие

$$\frac{\pi}{2} \leqslant |\angle ASB| < \pi.$$

Положим

$$r' = \frac{r}{\sin \varkappa / 2},\tag{2}$$

где $\varkappa = |\angle ASB|$. Если выполняется условие

$$\mathbf{B}(S, r') \cap \angle \mathring{D}S\mathring{A}_{\mathbb{Z}} = \varnothing, \tag{3}$$

то для любой точки $X \in \mathbb{R}^2$ существует дискретное полупространство или пространство Π такое, что

$$\angle ASB_{\mathbb{Z}} \cap \mathbf{B}(X,r) = \Pi \cap \mathbf{B}(X,r). \tag{4}$$

<u>Доказательство</u>. Разобьем плоскость \mathbb{R}^2 на несколько непересекающихся подмножеств и докажем справедливость теоремы для произвольной точки каждого из этих множеств. Рассмотрим несколько этапов.

Этап 1. Построим множество $\angle EGF$ и докажем для него справедливость теоремы. Зафиксируем точку C симметрично точке A относительно S. Пусть точка $G \in \angle \mathring{A}S\mathring{B}$. Через $\rho(G,l(S,B))$ обозначим расстояние от точки G до прямой l(S,B). Зафиксируем точку $G \in \angle \mathring{A}S\mathring{B}$ так, что справедливы равенства

$$\rho(G, l(S, B)) = \rho(G, l(S, A)) = r'.$$

Проведем через точку G прямую, параллельную l(S,B). Обозначим через J точку пересечения этой прямой с l(S,A). Проведем через точку G прямую, параллельную l(S,A). Обозначим через I точку пересечения этой прямой с l(S,B). Зафиксируем точку E так, что выполняются условия

$$E \in \angle \mathring{A}S\mathring{B} \cap l(I,G), |IE| > |IG|.$$

Зафиксируем точку F так, что выполняются условия

$$F \in \angle \mathring{A}S\mathring{B} \cap l(J,G), |JF| > |JG|.$$

Таким образом, справедливо равенство

$$\rho(l(G, F), l(S, B)) = \rho(l(G, E), l(S, A)) = r', \tag{5}$$

где через $\rho(l(G, F), l(S, B))$ обозначено расстояние между параллельными прямыми l(G, F), l(S, B).

Докажем справедливость теоремы для построенного угла $\angle EGF$. Из данных в условии теоремы ограничений на величину угла $\angle ASB$ и равенства (2) ясно, что имеет место двойное неравенство

$$r < r' < \infty. \tag{6}$$

Учитывая равенство (5), получаем соотношение

$$\forall X \in \angle EGF : \mathbf{B}(X,r) \cap \angle ASB = \mathbf{B}(X,r).$$

Следовательно, для любой точки $X \in \angle EGF$ можно положить $\Pi = \mathbb{Z}^2$.

Этап 2. Построим множество $\angle UNV$ и докажем для него теорему. Зафиксируем точку $N \in \angle \mathring{C}S\mathring{D}$ так, что справедливо равенство

$$\rho(N, l(S, D)) = \rho(N, l(S, C)) = r'.$$

Проведем через точку N прямую, параллельную l(S,C). Обозначим через V точку пересечения этой прямой с l(S,D). Проведем через точку N прямую, параллельную l(S,D). Обозначим через U точку пересечения этой прямой с l(S,C). Таким образом, справедливо равенство

$$\rho(l(N,U), l(S,B)) = \rho(l(N,V), l(S,A)) = r'. \tag{7}$$

Обозначим через K точку пересечения прямых l(G, E) и l(N, U). Обозначим через L точку пересечения прямых l(F, G) и l(N, V).

Докажем справедливость теоремы для угла $\angle UNV$. Из равенства (7) и неравенства (6) следуют соотношения:

$$\forall X \in \angle UNV : \mathbf{B}(X,r) \cap \angle ASB = \varnothing,$$

$$\forall \ X \in \angle KUN: \ \mathbf{B}(X,r) \subset \angle \mathring{B}S\mathring{D}, \quad \forall \ X \in \angle NVL: \ \mathbf{B}(X,r) \subset \angle \mathring{C}S\mathring{A}.$$

Из приведенных соотношений следует, что если точка $X \in \angle KUN$, то можно положить $\Pi = \angle DSB_{\mathbb{Z}}$, если точка $X \in \angle NVL$, то положим $\Pi = \angle ASC_{\mathbb{Z}}$. При этом будут справедливы равенства:

$$\forall X \in \angle KUN : \mathbf{B}(X,r) \cap \angle DSB_{\mathbb{Z}} = \varnothing,$$

$$\forall X \in \angle NVL : \mathbf{B}(X,r) \cap \angle ASC_{\mathbb{Z}} = \varnothing.$$

Следовательно, для множества $\angle UNV$ условие теоремы выполняется.

Этап 3. Зафиксируем точку K' на прямой l(N,U) симметрично точке U относительно K. Зафиксируем точку L' на прямой l(N,V) симметрично точке V относительно L.

Рассмотрим множество $\angle \mathring{F}GK \cap \angle GK\mathring{K}'$. Из равенства (5) и неравенства (6) следует соотношение

$$\forall X \in \angle \mathring{F}GK \cap \angle GK\mathring{K}' : \ \rho(X, l(S, A)) \geqslant r' > r.$$

Следовательно, для каждой точки $X \in \angle \mathring{F}GK \cap \angle GK\mathring{K}'$ можно положить $\Pi = \angle DSB_{\mathbb{Z}}$, при этом будет выполнено равенство (4).

Рассмотрим множество $\angle LG\check{E} \cap \angle \check{L}'LG$. Аналогично доказывается, что для любой точки этого множества можно положить $\Pi = \angle ASC_{\mathbb{Z}}$.

Этап 4. Рассмотрим четырехугольник

$$\Omega^1 = \angle IS\mathring{U} \cap \angle \mathring{S}U\mathring{K} \cap \angle \mathring{U}K\mathring{I} \cap \angle \mathring{K}IB.$$

Зафиксируем произвольную точку $X \in \Omega^1$ и построим дискретное полупространство Π такое, что справедливо равенство (4). Опишем алгоритм построения требуемого полупространства Π .

Алгоритм.

Bxod: точка $X \in \mathbb{R}^2$, угол $\angle BSC$, действительное число r(>1).

Bыход: полупространство Π , удовлетворяющее условию (4); точки $Z(\in \mathbb{R}^2),\ Z'(\in \mathbb{R}^2),$ определяющие полупространство Π .

Шаг 1. Если выполняется условие

$$\mathbf{B}(X,r) \cap \angle \mathring{B}S\mathring{C}_{\mathbb{Z}} \neq \varnothing, \tag{8}$$

то переходим на шаг 2, иначе переходим на шаг 4.

<u>Шаг 2</u>. Найдем точку $T (\in \mathbb{Z}^2)$ такую, что угол $\angle BST$ удовлетворяет условию

$$|\angle BST| = \min \left\{ |\angle BSW|, \ W \in \mathbf{B}(X,r) \cap \angle \mathring{B}S\mathring{C}_{\mathbb{Z}} \right\}.$$
 (9)

 $\mathbf{B}(X,r) \cap \angle \mathring{B}S\mathring{C}_{\mathbb{Z}}$ — конечное дискретное множество, следовательно, если выполнено условие (8), то точка T существует. Вообще говоря, точка T может определяться неединственным образом. Если это так, то в качестве T возьмем любую точку, удовлетворяющую условию (9).

<u>Шаг 3</u>. Зафиксируем произвольное положительное число ε такое, что $\varepsilon < \rho(T, l(S, B))$. Такое число существует, поскольку из условия (9) следует справедливость неравенства $\rho(T, l(S, B)) > 0$. Проведем перпендикуляр из точки T к прямой l(S, B). Выберем точку Z на этом перпендикуляре так, чтобы выполнялось равенство $\rho(Z, l(S, B)) = \varepsilon$. При таком способе выбора $Z \in \angle \mathring{B}S\mathring{C}$, но, вообще говоря, $Z \notin \mathbf{B}(X, r)$. Далее переходим к шагу 5.

<u>Шаг 4</u>. Возьмем произвольную точку $Z \in \angle BSC$.

Шаг 5. Строим точку Z', симметричную точке Z относительно S; положим $\Pi = \angle Z'SZ_{\mathbb{Z}}$.

Конец алгоритма.

Далее покажем, что для построенного полупространства Π выполняется равенство (4). Из конструкции алгоритма следует, что построенное полупространство Π представимо в виде

$$\Pi = \angle \mathring{B}SZ_{\mathbb{Z}} \cup \angle ASB_{\mathbb{Z}} \cup \angle Z'S\mathring{A}_{\mathbb{Z}}.$$
(10)

При этом дискретные углы, входящие в это объединение, попарно не пересекаются. Если удастся показать справедливость следующих двух условий:

$$\mathbf{B}(X,r) \cap \angle \mathring{B}SZ_{\mathbb{Z}} = \varnothing, \tag{11}$$

$$\mathbf{B}(X,r) \cap \angle Z' S \mathring{A}_{\mathbb{Z}} = \varnothing, \tag{12}$$

то тем самым будет доказано равенство (4).

Докажем равенство (11). Если условие (8) не выполнено, то справедливость этого равенства очевидна, так как имеет место вложение

$$\mathbf{B}(X,r) \cap \angle \mathring{B}SZ_{\mathbb{Z}} \subset \mathbf{B}(X,r) \cap \angle \mathring{B}S\mathring{C}_{\mathbb{Z}}.$$

Предположим, что условие (8) выполнено. Докажем справедливость равенства (11) от противного. Пусть выполнено условие

$$\mathbf{B}(X,r) \cap \angle \mathring{B}SZ_{\mathbb{Z}} \neq \varnothing$$

тогда найдется точка $Y \in \mathbf{B}(X,r) \cap \angle \mathring{B}SZ_{\mathbb{Z}}$, при этом справедливо неравенство $|\angle BSY| \leqslant |\angle BSZ|$. Из алгоритма построения точки Z следует неравенство $|\angle BSZ| < |\angle BST|$, где T — точка, построенная на шаге 2 алгоритма. Значит, справедливо неравенство $|\angle BSY| < |\angle BST|$, но это противоречит условию (9) минимальности угла, определяемого точкой T. Таким образом, справедливость равенства (11) доказана.

Докажем справедливость (12) от противного. Предположим, что

$$\mathbf{B}(X,r) \cap \angle Z' S \mathring{A}_{\mathbb{Z}} \neq \varnothing. \tag{13}$$

Тогда существует точка $Y \in \mathbf{B}(X,r) \cap \angle Z'S\mathring{A}_{\mathbb{Z}}$. Из неравенства (6) и алгоритма построения точки Z' вытекают вложения $\mathbf{B}(S,r) \subset \mathbf{B}(S,r')$, $\angle Z'S\mathring{A}_{\mathbb{Z}} \subset \angle \mathring{D}S\mathring{A}_{\mathbb{Z}}$. Из этих вложений и условия (3) следует равенство

$$\mathbf{B}(S,r) \cap \angle Z'S\mathring{A}_{\mathbb{Z}} = \varnothing. \tag{14}$$

Таким образом, точка $Y \in \angle Z'S\mathring{A}_{\mathbb{Z}} \setminus \mathbf{B}(S,r')$.

Непосредственно проверяется следующее утверждение:

$$\forall X_1 \in \angle \mathring{B}S\mathring{C}, \quad \forall X_2 \in \angle \mathring{D}S\mathring{A} \setminus \mathbf{B}(S, r') : |X_1X_2| > r'.$$

Из этого утверждения следует неравенство |XY| > r, которое противоречит тому, что $Y \in \mathbf{B}(X,r)$. Следовательно, предположение (13) было ложным, и равенство (12) доказано. Из представления (10) и уже доказанных равенств (11)–(12) следует справедливость равенства (4) теоремы.

Рассмотрим четырехугольник

$$\Omega^2 = \angle \mathring{V}SJ \cap \angle SJ\mathring{L} \cap \angle \mathring{J}\mathring{L}\mathring{V} \cap \angle \mathring{L}V\mathring{S}.$$

Абсолютно аналогично доказывается, что равенство (4) выполняется для любой точки этого четырехугольника.

Этап 5. Рассмотрим четырехугольник

$$\Omega^3 = \angle \mathring{J}S\mathring{I} \cap \angle \mathring{S}\mathring{I}\mathring{G} \cap \angle \mathring{I}G\mathring{J} \cap \angle \mathring{G}\mathring{J}\mathring{S}.$$

Разобьем его на несколько подмножеств и докажем теорему для каждого из них. Обозначим через $\mathbf{K}(S,r')$ окружность круга $\mathbf{B}(S,r')$. Обозначим

через P точку пересечения окружности $\mathbf{K}(S,r')$ и луча $\vec{l}(S,B)$, через Q — точку пересечения окружности $\mathbf{K}(S,r')$ и луча $\vec{l}(S,C)$, через P' — точку пересечения окружности $\mathbf{K}(S,r')$ и луча $\vec{l}(S,D)$, через Q' — точку пересечения окружности $\mathbf{K}(S,r')$ и луча $\vec{l}(S,A)$. Точки P и I,Q и U,P' и V,Q' и J совпадают, если угол $\angle ASB$ — прямой. Введем несколько обозначений:

$$\Phi_1 = \mathbf{B}(P, r) \cap \Omega^3, \quad \Phi_2 = \mathbf{B}(Q', r) \cap \Omega^3, \quad \Phi_3 = \Omega^3 \setminus (\Phi_1 \cup \Phi_2).$$

Из построения точек P и Q' и соотношения (2) следует равенство

$$\Phi_1 \cap \Phi_2 = \varnothing. \tag{15}$$

Из конструкции множеств Φ_1 , Φ_2 , Φ_3 ясно, что Ω^3 представимо в виде

$$\Omega^3 = \Phi_1 \cup \Phi_2 \cup \Phi_3,\tag{16}$$

причем из определения множества Φ_3 и предыдущего равенства следует, что множества, входящие в это объединение, попарно не пересекаются. Построим требуемое в теореме полупространство Π для произвольной точки каждого из множеств Φ_1 , Φ_2 , Φ_3 .

Рассмотрим множество Φ_1 . Зафиксируем произвольную точку $X \in \Phi_1$ и построим полупространство Π , удовлетворяющее условию (4). Применяя алгоритм, описанный на этапе 4, строим точки $Z \in \angle \mathring{B}S\mathring{C}$, $Z' \in \angle \mathring{D}S\mathring{A}$ и полупространство $\Pi = \angle Z'SZ_{\mathbb{Z}}$. Из конструкции алгоритма ясно, что разбиение (10) оказывается верным. Необходимо доказать равенства (11) и (12). Доказательство равенства (11) полностью аналогично доказательству соответствующего случая, проведенному на этапе 4. Доказательство равенства (12) проведем от противного.

Предположим, что справедливо условие (13), тогда существует точка $Y \in \mathbf{B}(X,r) \cap \angle Z'S\mathring{A}_{\mathbb{Z}}$. Из (6) и алгоритма построения точки Z' вытекают вложения $\mathbf{B}(S,r) \subset \mathbf{B}(S,r'), \angle Z'S\mathring{A}_{\mathbb{Z}} \subset \angle \mathring{D}S\mathring{A}_{\mathbb{Z}}$. Из этих вложений и условия (3) следует равенство (14). Из равенства (15) следует утверждение

$$\forall X \in \Phi_1 \ \forall Y \in \angle Z'S\mathring{A} \setminus \mathbf{B}(S, r') : |XY| > r.$$

Это противоречит тому, что точка $Y \in \mathbf{B}(X,r)$. Следовательно, выполняется равенство (12). Таким образом, равенство (4) установлено для произвольной точки множества Φ_1 . Аналогично доказывается требуемое равенство для произвольной точки множества Φ_2 . Похожими рассуждениями требуемое в теореме полупространство Π строится для произвольной точки множества Φ_3 . Таким образом, из разбиения (16) следует существование требуемого в теореме полупространства для каждой точки множества Ω^3 .

Этап 6. Рассмотрим четырехугольник

$$\Omega^4 = \angle USV \cap \angle SV\mathring{N} \cap \angle \mathring{V}N\mathring{U} \cap \angle \mathring{N}US,$$

разобьем его на три попарно непересекающихся подмножества

$$\Phi_1' = \mathbf{B}(Q, r) \cap \Omega_4, \ \Phi_2' = \mathbf{B}(P', r) \cap \Omega_4, \ \Phi_3' = \Omega^4 \setminus (\Phi_1' \cup \Phi_2').$$

Аналогично этапу 5 для произвольной точки каждого из этих подмножеств строится полупространство П, удовлетворяющее условию теоремы.

Итак, мы разбили плоскость \mathbb{R}^2 на несколько попарно непересекающихся подмножеств:

$$\mathbb{R}^2 = \angle EGF \cup \angle UNV \cup (\angle \mathring{F}GK \cap \angle GK\mathring{K}') \cup (\angle LG\mathring{E} \cap \angle \mathring{L}'LG) \cup \bigcup_{i=1}^4 \Omega^i,$$

и доказали справедливость заключения теоремы для произвольной точки каждого из этих подмножеств. Таким образом, теорема доказана.

■

3. Алгоритмическое построение базового множества

Зафиксируем на плоскости \mathbb{R}^2 декартову систему координат xOy и порожденное ей дискретное пространство \mathbb{Z}^2 . Пусть $A_0 = O, X_0$ — произвольная точка на положительной полуоси оси Ox, Y_0 — произвольная точка на положительной полуоси оси Oy. Пусть $Q \in \mathbb{Z}^2$ — произвольная точка. Через $\mathbf{B}_{\mathbb{Z}}(Q,r)$ будем обозначать следующее множество:

$$\mathbf{B}_{\mathbb{Z}}(Q,r) \stackrel{\mathrm{def}}{=} \mathbf{B}(Q,r) \cap \mathbb{Z}^2.$$

Опишем алгоритм построения элемента семейства $\mathfrak{M}(r)$ (см. (1)) для значений параметра $r > \sqrt{2}$.

Алгоритм 1.

 $Bxo\partial: r(>\sqrt{2})$ — фиксированное действительное число.

Bыход: множество $M \in \mathfrak{M}(r)$, замкнутая ломаная $A_0A_1 \dots A_lA_0$, ограничивающая множество M.

Шаг 1. Положим

$$\varkappa = \min\{|\angle PA_0Q| : P, Q(\neq P) \in \mathbf{B}_{\mathbb{Z}}(A_0, r)\}; \quad r' = \frac{r}{\sin \varkappa/2}.$$

Зафиксируем произвольную целочисленную точку $Q \in \angle X_0 A_0 Y_0$ так, что

$$|\angle X_0 A_0 Q| = \frac{\pi}{4}.$$

Шаг 2. На луче $\vec{l}(A_0, X_0)$ строим отрезок A_0A_1 такой, что

$$|A_0 A_1| = [r'] + 1,$$

где [r'] — целая часть числа r'.

Шаг 3. Положим k=1. Выполняем следующую процедуру до тех пор, пока очередной построенный отрезок A_pA_{p+1} не будет лежать на прямой, параллельной лучу $\vec{l}(A_0,Q)$. Получим ломаную $A_0A_1A_2\dots A_pA_{p+1}$.

Процедура.

 $Bxo\partial$: натуральное число k, действительное число $r'(>\sqrt{2})$, целочисленные точки $A_{k-1},\ A_k$.

Bыход: целочисленная точка A_{k+1} .

Шаг I. Зафиксируем на луче $\vec{l}(A_{k-1},A_k)$ произвольную целочисленную точку X_k так, что $|A_{k-1}A_k|<|A_{k-1}X_k|$. Рассмотрим перпендикуляр к прямой $l(A_{k-1},A_k)$ в точке A_k , построенный в полуплоскости $\angle X_k A_k A_{k-1}$. Зафиксируем на этом перпендикуляре произвольную точку $Y_k (\notin l(A_{k-1},A_k))$. Определим множество

$$\Phi_k = \angle X_k A_k Y_k \cap \mathbf{B}_{\mathbb{Z}}(A_k, r').$$

<u>Шаг II</u>. Найдем точку G_k , для которой выполняется условие

$$|\angle X_k A_k G_k| = \min\{|\angle X_k A_k P| \mid P \in \Phi_k \setminus l(A_k, X_k)\}.$$

 ${\it Замечание}.$ Точка G_k может быть, вообще говоря, неединственной. Если это так, то в качестве G_k возьмем любую точку, для которой выполняется требуемое условие.

Шаг III. Для вектора $\overrightarrow{A_kG_k}$ запускаем итерационный процесс:

$$i := 1; \quad \overrightarrow{A_k G_k^1} := \overrightarrow{A_k G_k};$$

while $|A_k G_k^i| < r'$ do

$$i := i + 1; \quad \overrightarrow{A_k G_k^i} := \overrightarrow{A_k G_k^{i-1}} + \overrightarrow{A_k G_k};$$

end while.

<u>Шаг IV</u>. Пусть \tilde{i} — номер, на котором остановился итерационный процесс. Положим $\overrightarrow{A_k}\overrightarrow{A}_{k+1}:=2\overrightarrow{A_k}\overrightarrow{G}_k^{\tilde{i}}$.

Конец процедуры.

- **Шаг 4.** Пусть целочисленная точка M середина отрезка A_pA_{p+1} . Построим в точке M прямую, перпендикулярную отрезку A_pA_{p+1} , и симметрично отразим каждую точку ломаной $A_0A_1A_2\dots A_pA_{p+1}$ относительно этой прямой. Получим ломаную $A_0A_1A_2\dots A_pA_{p+1}\dots A_{2p+1}$.
- **Шаг 5.** Пусть вектор $O\dot{A}_{2p+1}$ имеет в системе координат xOy координаты (ξ,η) . Преобразуем ломаную $A_0A_1A_2\ldots A_{2p+1}$ путем сдвига каждой ее точки на вектор с координатами $(0,-\eta)$.
- **Шаг 6.** Симметрично отразим ломаную $A_0A_1A_2...A_{2p+1}$ относительно оси Oy, а затем относительно оси Ox. В результате получим искомую замкнутую ломаную $A_0A_1...A_lA_0$, где l=8p+3. Конечное подмножество \mathbb{Z}^2 , ограниченное ломаной $A_0A_1...A_lA_0$, есть искомое множество M.

Конец алгоритма 1.

Опишем алгоритм, преобразующий множество M так, что полученное на выходе этого алгоритма множество принадлежит семейству $\mathfrak{M}(r,R)$.

Алгоритм 2.

 $Bxo\partial$: множество M и ломаная $A_0A_1\dots A_lA_0$, полученные на выходе алгоритма 1; R(>0) — фиксированное действительное число.

Выход: множество $\tilde{M} \in \mathfrak{M}(r,R)$.

Шаг 1. Если справедливо вложение $\mathbf{B}(O,R)\subset M$, то положим $\tilde{M}=M$, алгоритм завершен; иначе переходим к шагу 2.

Шаг 2. Положим $p=1; A_0^p A_1^p \dots A_l^p A_0^p = A_0 A_1 \dots A_l A_0; M^p=M$. Пусть (x_i^p, y_i^p) — координаты точки A_i^p . Запускаем итерационный процесс:

$$i := -1;$$

while i < l do

$$i := i + 1;$$
 $x_i^{p+1} := 2x_i^p;$ $y_i^{p+1} := 2y_i^p;$ $A_i^{p+1} := (x_i^{p+1}, y_i^{p+1});$

end while.

Получаем множество M^{p+1} , ограниченное ломаной $A_0^{p+1}A_1^{p+1}\dots A_l^{p+1}A_0^{p+1}$.

Шаг 3. Если справедливо вложение $\mathbf{B}(O,R)\subset M^{p+1}$, то положим $\tilde{M}=M^{p+1}$, алгоритм завершен; иначе положим p:=p+1, переходим к шагу 2.

Конец алгоритма 2.

Для любых действительных чисел R>0 и $r>\sqrt{2}$ построенное алгоритмами 1 и 2 дискретное множество \tilde{M} принадлежит $\mathfrak{M}(r,R)$. Обоснование корректности построенных алгоритмов и доказательство этого утверждения публикуются отдельно. Отметим, что практический интерес представляет ситуация, когда r велико [3], хотя алгоритмы нетрудно адаптировать к случаю $0< r \leqslant \sqrt{2}$.

Список литературы

- 1. Гохберг И. Ц., Фельдман И. А. Уравнения в свертках и проекционные методы их решения. М.: Наука, 1971. 352 с.
- 2. *Козак А. В.* Локальный принцип в теории проекционных методов // Докл. АН СССР. 1973. Т. 212, № 6. С. 1287–1289.
- 3. *Козак А. В., Симоненко И. Б.* Проекционные методы решения многомерных дискретных уравнений в свертках // Сибирский математический журнал. 1980. Т. XXI, № 2, С. 119–127.
- 4. *Симоненко И. Б.* Локальный метод в теории инвариантных относительно сдвига операторов и их огибающих. Ростов н/Д: Изд-во ЦВВР, 2007. 120 с.

Поступила в редакцию 1.12.2011.