Серия «Естественные, общественные науки»

Вып. 2 / 2009 С. 117 – 120

С. В. Пухов

ТЕОРЕМА ФАНЬ ЦЗИ — ГЛИКСБЕРГА — ГОФФМАНА ДЛЯ ВЫПУКЛЫХ ОТОБРАЖЕНИЙ СО ЗНАЧЕНИЯМИ В УПОРЯДОЧЕННЫХ ВЕКТОРНЫХ ПРОСТРАНСТВАХ

Получено обобщение теоремы Фань Цзи — Гликсберга — Гоффмана о системах неравенств для выпуклых функций на случай выпуклых отображений со значениями в упорядоченных векторных пространствах.

We obtain the generalization of the Fan Ky — Glicksberg — Hoffman theorem about systems inequalities involving convex functions for the convex mappings from vector spaces into partially ordered vector spaces.

Ключевые слова: упорядоченное векторное пространство, положительный конус, выпуклое отображение, выпуклое множество, ядро множества

 $\mathit{Key\ words}$: partially ordered vector space, positive cone, convex mapping, convex set, core of a set.

УДК 519.6.

В работе рассматриваются векторные пространства только над полем вещественных чисел — вещественные векторные пространства (в.в.п.), а также упорядоченные векторные пространства (у.в.п.).

1. Пусть Z — у.в.п. с "положительным конусом" K, где $K\subseteq Z$. Порядок в Z будем обозначать \geqslant (или \leqslant), т. е. $z_1\geqslant z_2$ ($z_2\leqslant z_1$), если $z_1-z_2\in K$. Известно [3, гл. V], что указанное бинарное отношение является (частичным) порядком в Z тогда и только тогда, когда K — конус ($\alpha K\subseteq K,\ \alpha>0$, возможно умножение неравенства на положительные числа), причем K — заостренный конус ($0_Z\in K$, отношение рефлексивно), выступающий конус ($K\cap (-K)=\{0_Z\}$, поэтому K не является поглощающим множеством, отношение антисимметрично), выпуклый конус ($K+K\subseteq K$, отношение транзитивно, возможно почленное сложение неравенств одного знака).

Пусть теперь $H \colon X \to Z$, где X - в.в.п. Отображение H называется выпуклым отображением, если надграфик

epi
$$H = \{(x,z) \in X \times Z : z \stackrel{K}{\geqslant} H(x), x \in X\}$$

является выпуклым множеством в $X \times Z$.

Легко проверить, что H — выпуклое отображение, если и только если выполнено *неравенство Иенсена*: при всех $x_1, x_2 \in X$ и всех $\alpha \in [0; 1]$

$$\alpha H(x_1) + (1-\alpha)H(x_2) \stackrel{K}{\geqslant} H(\alpha x_1 + (1-\alpha)x_2).$$

Для обозначения (алгебраически) сопряженного к Z пространства мы используем символ Z', а для его элементов пишем $z' \in Z'$, действие $z' \in Z'$ на $z \in Z$ обозначаем $\langle z', z \rangle$. Как обычно, сопряженным конусом к конусу K называется множество

$$K' = \{z' \in Z' : \langle z', z \rangle \geqslant 0$$
 при всех $z \in K\}$.

- 2. В дальнейшем изложении нам потребуются некоторые свойства конусов и их ядер. Перечислим их. Как и выше, K заостренный, выступающий, выпуклый конус в Z с непустым ядром, соге $K \neq \emptyset$.
- 1). соге K выпуклое множество в Z. Это общее свойство ядра: в вещественном векторном пространстве ядро выпуклого множества само является выпуклым множеством (см., например, [1, с. 128—129]).
 - 2). $\operatorname{core} K \operatorname{конус} \operatorname{B} Z$.

Действительно, если $\hat{z}\in \operatorname{core} K$ и $\alpha>0$, то для $\hat{z}_{\alpha}\stackrel{\mathrm{def}}{=}\alpha\hat{z}$ имеем: в силу того, что $\hat{z}\in \operatorname{core} K$, для любого $z\in Z$ существует $\varepsilon=\varepsilon(z)>0$ такое, что при всех $t,|t|<\varepsilon$, выполнено $\hat{z}+tz\in K$, а в силу того, что K— конус, имеем $\alpha\hat{z}+(\alpha t)z\in K$ или $\hat{z}_{\alpha}+\tau z\in K$ при $\tau,|\tau|<\varepsilon_{\alpha}=\alpha\varepsilon$. Итак, $\hat{z}_{\alpha}\in \operatorname{core} K$.

3). $K + \operatorname{core} K = \operatorname{core} K$.

Включение соге $K\subseteq K+$ соге K очевидно в силу определения операции сложения множеств и того обстоятельства, что $0_Z\in K$. Покажем обратное включение. Пусть $z_1\in K$ и $z_0\in$ соге K. Тогда для любого $z\in Z$ существует $\varepsilon>0$ такое, что при всех $t,|t|<\varepsilon$, выполнено $z_0+tz\in K$. Но K — выпуклый конус, а $z_1\in K$, значит, и $z_1+z_0+tz\in K$. Таким образом, $z_1+z_0\in$ соге K, т. е. K+ соге $K\subseteq$ соге K.

3. **Теорема.** Пусть Z-6.6.n. и G-6ыпуклое множество в X, а $H: X \to Z-6ыпуклое$ отображение, причем Z-y.6.n. с положительным конусом K, имеющим непустое ядро, соге $K \neq \emptyset$.

Тогда имеет место один и только один из двух случаев:

- (A) cywecmsyem mouka $\tilde{x} \in G$ makas, umo $(-H(\tilde{x})) \in \operatorname{core} K$;
- (Б) существует такой ненулевой линейный функционал \bar{z}' из K'- алгебраически сопряженного к K конуса, что при всех $x \in G$ выполнено неравенство $\langle \bar{z}', H(x) \rangle \geqslant 0$.

Итак, пусть существует точка $\tilde{x} \in G$ такая, что $(-H(\tilde{x})) \in \text{core } K$. Так как по определению $\text{core } K \subseteq K$, то для любого линейного функционала $z' \in K'$ следует, что $\langle z', -H(\tilde{x}) \rangle \geqslant 0$, или

$$\langle z', H(\tilde{x}) \rangle \leqslant 0$$
 при всех $z' \in K'$. (1)

Пусть все же (Б) выполнено, т. е. существует ненулевой линейный функционал $\bar{z}' \in K'$ такой, что выполнено неравенство

$$\langle \bar{z}', H(x) \rangle \geqslant 0$$
 при всех $x \in G$. (2)

Из (1) (при $z'=\bar{z}'$) и (2) (при $x=\tilde{x}$) получаем, что $\langle\ \bar{z}',\ H(\tilde{x})\rangle=0,$ или

$$\langle \bar{z}', -H(\tilde{x}) \rangle = 0.$$
 (3)

Далее, т. к. $(-H(\tilde{x})) \in \operatorname{core} K$, то для любого $z \in Z$ существует $\varepsilon = \varepsilon(z) > 0$ такое, что при всех $t, |t| < \varepsilon$, имеем, что $-H(\tilde{x}) + tz \in K$ и, значит, $\langle \ \bar{z}', \ -H(\tilde{x}) + tz \rangle \geqslant 0$. Отсюда в силу (3) получаем $t \langle \ \bar{z}', \ z \rangle \geqslant 0$ при всех $t, |t| < \varepsilon$, а, значит, $\langle \ \bar{z}', \ z \rangle = 0$ при всех $z \in Z$, т. е. $\bar{z}' = 0_{Z'}$, что противоречит предположению (Б) $(\bar{z}' \neq 0_{Z'})$. Итак, если (А) выполнено, то (Б) не выполнено.

Покажем теперь, что если (А) не выполнено, то (Б) выполнено. Рассмотрим множество

$$M = \bigcup_{x \in G} \{H(x) + \operatorname{core} K\}.$$

1). Отметим, что M — выпуклое множество в Z. Пусть $z_1, z_2 \in M$. Тогда для некоторых $x_1, x_2 \in G$

$$z_1 \in H(x_1) + \operatorname{core} K, \qquad z_2 \in H(x_2) + \operatorname{core} K$$

и, значит, для некоторых $\hat{z_1}, \hat{z_2} \in \operatorname{core} K$ имеем

$$z_1 = H(x_1) + \hat{z_1}, \quad z_2 = H(x_2) + \hat{z_2}.$$
 (4)

Для $\alpha \in (0; 1)$ рассмотрим точку $x_{\alpha} = \alpha x_1 + (1 - \alpha)x_2$, она принадлежит множеству G в силу его выпуклости, $x_{\alpha} \in G$. Аналогично, $\hat{z}_{\alpha} = \alpha \hat{z}_1 + (1 - \alpha)\hat{z}_2 \in \operatorname{core} K$, т. к. $\operatorname{core} K - \operatorname{выпуклое}$ множество (по причине того, что $K - \operatorname{выпуклое}$ множество). Обозначим

$$z_{\alpha} = \alpha z_1 + (1 - \alpha)z_2.$$

Из (4) имеем

$$lpha(z_1 - \hat{z}_1) = lpha H(x_1),$$
 $(1 - lpha)(z_2 - \hat{z}_2) = (1 - lpha)H(x_2),$

$$\begin{aligned} z_{\alpha} - \hat{z}_{\alpha} &= \alpha(z_{1} - \hat{z}_{1}) + (1 - \alpha)(z_{2} - \hat{z}_{2}) = \\ &= \alpha H(x_{1}) + (1 - \alpha)H(x_{2}) \overset{K}{\geqslant} H(\alpha x_{1} + (1 - \alpha x_{2})) = H(x_{\alpha}). \end{aligned}$$

Итак, $z_{\alpha}-H(x_{\alpha})\stackrel{K}{\geqslant}\hat{z}_{\alpha}$, следовательно, $z_{\alpha}-H(x_{\alpha})\in\hat{z}_{\alpha}+K$, т. е. $z_{\alpha}-H(x_{\alpha})\in\mathrm{core}\,K+K=\mathrm{core}\,K$ или $z_{\alpha}\in H(x_{\alpha})+\mathrm{core}\,K$. Значит, $z_{\alpha}\in M$.

2). Теперь отметим, что $M\cap (-K)=\emptyset$. Действительно, если существует $-\tilde{z}\in -K$ (т. е. $\tilde{z}\in K$) такая, что $-\tilde{z}\in M$, то при некотором $\hat{x}\in G$ имеем

$$-\tilde{z} \in H(\hat{x}) + \operatorname{core} K$$
,

т. е. $-H(\hat{x}) \in \tilde{z} + \mathrm{core}\, K \subseteq K + \mathrm{core}\, K = \mathrm{core}\, K$. А последнее означает, что (A) выполнено. Это противоречит нашему предположению (что (A) не выполнено). Поэтому $M \cap (-K) = \emptyset$.

3). Поскольку соге $M\supset$ соге $K\neq\emptyset, M$ и K- выпуклые множества и $M\cap(-K)=\emptyset,$ то M и (-K) можно отделить [1, с. 138]: существует $\bar{z}'\in Z', \ \bar{z}'\neq 0_Z$ такой, что при всех $x\in G, \ z\in K$ и $\hat{z}\in$ соге K выполнено неравенство отделимости

$$\langle \bar{z}', -z \rangle \leqslant \langle \bar{z}', H(x) + \hat{z} \rangle.$$
 (5)

Отсюда следует, что

$$\langle \bar{z}', z \rangle \geqslant 0$$
 при всех $z \in K$ (6)

и
$$\langle \bar{z}', H(x) + \hat{z} \rangle \geqslant 0$$
 при всех $x \in G$ и всех $\hat{z} \in \text{core } K$, (7)

иначе при невыполнении (6) левая часть в (5) не ограничена сверху и правая часть в (5) не ограничена снизу.

Из (6) сразу получаем, что $\bar{z}' \in K'$, а из (7) при фиксированных $x \in G$ и $\hat{z_1} \in \operatorname{core} K$ и малых положительных α получаем $\alpha \hat{z_1} \in \operatorname{core} K$ (т. к. $\operatorname{core} K$ — тоже конус), и, значит, в силу (7) $\langle \ \bar{z}', \ H(x) + \alpha \hat{z_1} \rangle \geqslant 0$. Откуда при $\alpha \to +0$ получаем при всех $x \in G$ неравенство

$$\langle \bar{z}', H(x) \rangle \geqslant 0.$$

Итак, если (А) не выполнено, то (Б) выполнено.

В итоге: в силу первой части доказательства $(A) \Rightarrow \neg(B)$ и, значит, $(B) \Rightarrow \neg(A)$, а также в силу второй части доказательства $\neg(A) \Rightarrow (B)$, т. е. $(A) \Leftrightarrow \neg(B)$, $(B) \Leftrightarrow \neg(A)$. Теорема доказана.

4. Замечания

а). В конечномерном случае ($X = \mathbb{R}^n$, $Z = \mathbb{R}^m$,

$$K = \{z = (z_1, ..., z_m) \in \mathbb{R}^m : z_j \geqslant 0, j = \overline{1, m}\},\$$

 $F(x)=(f_1(x),...,f_m(x)),\ f_i$ — выпуклые функции) теорема Фань Цзи— Гликсберга— Гоффмана (ФГГ) доказана в [2, с. 203—205], см. также [4].

- б). Наше доказательство для бесконечномерного случая не является простым переносом доказательства в конечномерном случае.
- в). Теоремы об альтернативе (или совместности) для систем линейных и выпуклых неравенств играют важную роль при изучении экстремальных задач, в том числе теорема ФГГ для систем выпуклых неравенств, а также теоремы Моцкина и Таккера и других для систем линейных неравенств.

Библиографический список

- 1. Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. М.: Наука, 1976. $544~\mathrm{c}$.
- 2. Рокафеллар Р. Выпуклый анализ. М.: Мир, 1973. 472 с.
- 3. Шефер X. Топологические векторные пространства. М.: Мир, 1971. $360~\rm c.$
- 4. Fan Ky, Glicksberg I., Hoffman A. J. Systems of inequalities involving convex functions // Proc. Amer. Math. Soc. Vol. 8 (1957). P. 617—622.