Математика ● 77

порожденной группой. Давид Ионович обобщил этот результат на случай π -изоляторов, где π — множество простых чисел, причем он нашел абсолютно элементарное доказательство для этого общего утверждения.

Пять лет тому назад в декабре 2015 года под руководством декана факультета математики и компьютерных наук Б. Я. Солона в ИвГУ состоялась Международная научная конференция «Алгоритмические проблемы в алгебре и теории вычислимости», посвященная 75-летию д. ф.-м. н., профессора Давида Ионовича Молдаванского [1, 2]. Среди участников конференции были ведущие математики из Москвы, Ярославля, Новосибирска и Тулы. Как признавались гости конференции, они приехали в Иваново прежде всего для того, чтобы лично поздравить юбиляра. Давид Ионович продолжает оставаться центром притяжения для специалистов в области теории групп, талантливых математиков, выпускников математического факультета.

В заключение хочется пожелать Давиду Ионовичу здоровья, новых научных результатов и успехов в творческой деятельности, которую он так любит.

Библиографический список

- 1. Алгоритмические проблемы в алгебре и теории вычислимости : Международная научная конференция, посвященная 75-летию Д. И. Молдаванского : сб. науч. трудов. Иваново, Иван. гос. ун-т, 2016. 89 с.
- 2. Международная научная конференция «Алгоритмические проблемы в алгебре и теории вычислимости», посвященная 75-летию Д.И.Молдаванского. URL: http://math.ivanovo.ac.ru/dalgebra/mold75/mold75.html (дата обращения: 24.11.2020).
- 3. *Молдаванский Д. И.* 40 лет научной логико-алгебраической школе ИвГУ: итоги и перспективы // Вестник Ивановского государственного университета. Сер.: Естественные, общественные науки. 2014. Вып. 2. С. 75—80.
- 4. *Молдаванский Д. И.* Комбинаторная теория групп в Ивановском государственном университете // Чебышевский сборник. 2014. Т. 15, вып. 4. С. 32—54.

УДК 519.852

А. Ф. Вялов

О МНОЖЕСТВЕ ДОПУСТИМЫХ РЕШЕНИЙ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

При исследовании не полностью вырожденной задачи линейного программирования в n-мерном евклидовом пространстве в статье доказано, что (n-m)-мерное множество допустимых решений задачи представляет собой либо выпуклый многогранник, либо усеченный конус в (n-m)-мерной плоскости. Доказаны возможные исходы решения задачи, используя проекцию произвольного множества точек на прямую в n-мерном евклидовом пространстве. Сформулировано необходимое и достаточное условие, при котором множество допустимых решений задачи линейного программирования пусто.

 ${\it Knovesue}\ {\it c.nosa:}\$ линейное программирование, оптимальное управление, оптимизация.

[©] Вялов А. Ф., 2020

A. F. Vyalov

ON THE SET OF FEASIBLE SOLUTIONS OF THE LINEAR PROGRAMMING PROBLEM

At research the not completely degenerate problem of linear programming in the n-dimensional Euclidean space, it is proved in the paper that the (n-m)-dimensional set of feasible solutions of the problem represents either a convex polyhedron, or a blunted cone in an (n-m)-dimensional plane. Possible outcomes of the problem solution are proved using the projection of an arbitrary set of points to a straight line in the n-dimensional Euclidean space. The necessary and sufficient condition is formulated at which the set of feasible solutions of the linear programming problem is empty.

Key words: linear programming, optimum control, optimization.

Множество \mathcal{M} допустимых решений задачи линейного программирования (ЗЛП), на котором следует отыскать минимум целевой функции

$$(\mathbf{C}, \mathbf{X}) \to \min$$
 (1)

в евклидовом пространстве 1 E_{n} , есть пересечение (n-m)-мерной плоскости [3] \mathcal{E}_{n-m} , описываемой системой m < n линейных уравнений

$$\mathbf{AX} = \mathbf{B}, \quad \text{rk } \mathbf{A} = m, \tag{2}$$

с n-мерным конусом K, задаваемым системой неравенств

$$x_i \geqslant 0, \quad i = 1, \dots, n. \tag{3}$$

Множество \mathcal{M}_0 допустимых решений ЗЛП, если ограничение (2) — система однородных линейных уравнений, никогда не пусто: либо точка О (начало координат пространства E_n), либо конус с вершиной в точке О [1]. Далее $\mathbf{B} \neq (0,0,\ldots,0)$.

Числовая строка $\mathbf{C} = (c_1, c_2, \dots, c_n)$ определяет направление возрастания функции цели в \mathbf{E}_n [4]. *Направление* в \mathbf{E}_n (как и в [1]) — нормированная строка чисел².

Пересечение плоскости \mathcal{E}_{n-m} с конусом \mathcal{K} есть либо выпуклое множество (как пересечение выпуклых множеств) точек \mathcal{M} в \mathbf{E}_n размерности³ n-m, либо пустое множество. Иначе говоря, $\mathcal{M} \neq \emptyset$ — фрагмент плоскости \mathcal{E}_{n-m} (некая выпуклая фигура в \mathcal{E}_{n-m}).

Возьмем произвольную точку $\mathbf{X_0} \in \mathcal{E}_{n-m}$. Геометрически плоскость \mathcal{E}_{n-m} — множество точек всевозможных прямых в \mathbf{E}_n , направления которых принадлежат *множеству Р направлений* в плоскости \mathcal{E}_{n-m} , содержащих эту точку.

Конус \mathcal{K} является множеством точек лучей в E_n , проведенных из точки O. Множество направлений, в которых можно провести луч из точки O

 $^{^1\}Pi$ ространство E_n — это множество числовых строк, интерпретируемых как точки.

 $^{^{2}}$ Здесь говорится о направлении $\mathbf{C}/|\mathbf{C}|$. Интерпретируется как орт.

³Вообще говоря, размерность фрагмента \mathcal{M} лежит в диапазоне [0, n-m].

⁴Базис подпространства \mathcal{E}'_{n-m} определяет множество P направлений в \mathcal{E}'_{n-m} . При сдвиге подпространства множество P не изменяется [1].

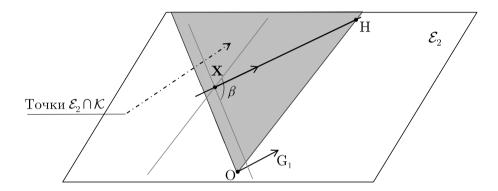
Математика • 79

в конусе \mathcal{K} , обозначим L. Направление, в котором проведен луч, будем называть направлением луча.

Предложение 1. Из любой точки **X** конуса \mathcal{K} можно провести луч внутри конуса \mathcal{K} лишь в направлении $G \in L$.

То, что из любой точки \mathbf{X} конуса \mathcal{K} можно провести луч внутри конуса \mathcal{K} в любом из направлений $G \in L$, очевидно⁵. В направлении $G_1 = -G$, $G \in L$, луч из точки $\mathbf{X} \in \mathcal{K}$ внутри конуса \mathcal{K} провести невозможно.

Пусть направление G_1 таково, что $G_1 \notin L$ и $-G_1 \notin L$. Точка $\mathbf{X} \in \mathcal{K}$ и прямая, содержащая направленный отрезок G_1 , определяют двумерную плоскость \mathcal{E}_2 в E_n (см. рис. 1). Плоскость \mathcal{E}_2 пересекает грани конуса \mathcal{K} .



Puc.~1. Пересечение плоскости \mathcal{E}_2 с n-мерным конусом $\mathcal{K}~(n\geqslant 2)$

Через точку \mathbf{X} проведем прямые, параллельные граням области пересечения плоскости \mathcal{E}_2 с конусом \mathcal{K} . Прямые пересекаются под углом β .

Луч, проведенный из точки X в направлении G_1 , пересекает границу области конуса в точке H, так как прямая, содержащая луч, не параллельна границе области пересечения плоскости \mathcal{E}_2 с конусом \mathcal{K} .

Только у прямых, проходящих через точку ${\bf X}$ внутри угла β , множество P направлений не содержит направления ${\bf G}\in L$, они пересекают границы области конуса.

Все остальные сечения конуса аналогичны.

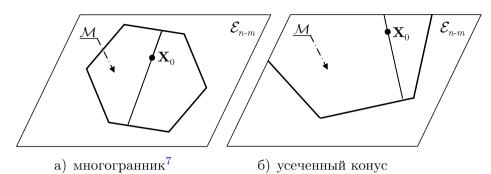
Вывод. Пересечение прямой, направления у которой $G_1 \notin L$ и $-G_1 \notin L$, проведенной через точку $\mathbf{X} \in \mathcal{K}$, с конусом \mathcal{K} есть отрезок (либо точка, если точка \mathbf{X} — точка ребра конуса \mathcal{K} , а прямая касается конуса лишь в точке \mathbf{X}).

Если множество направлений P в плоскости \mathcal{E}_{n-m} не содержит ни одного направления из подмножества L множества направлений в конусе \mathcal{K}^6 и у плоскости \mathcal{E}_{n-m} есть общая точка $\mathbf{X_0}$ с конусом \mathcal{K} , то (учитывая, что в каждом из направлений $\mathbf{G} \in P$ через эту точку в плоскости \mathcal{E}_{n-m} можно провести прямую, а в конусе \mathcal{K} лишь отрезок) выпуклый фрагмент \mathcal{M} состоит из отрезков.

 $^{^5}$ Например, достаточно *сдвигом* построить копию конуса $\mathcal K$ с вершиной в точке **X**. Копия не выйдет за пределы конуса $\mathcal K.$

 $^{^6}$ Множество направлений в конусе $\mathcal K$ совпадает с множеством направлений в $\mathrm{E}_n.$

Множество концов отрезков образует грани фрагмента \mathcal{M} . Грани фрагмента \mathcal{M} — это фрагменты плоскостей \mathcal{E}_{n-m-1} , получившиеся при пересечении плоскости \mathcal{E}_{n-m} с гранями конуса \mathcal{K} . Фрагмент $\mathcal{M} \subset \mathcal{E}_{n-m}$ — выпуклый многогранник. На рис. 2-a приведен пример двумерного многогранника.



 $Puc.\ 2.\$ Варианты (n-m)-мерных фрагментов \mathcal{M} в плоскости \mathcal{E}_{n-m} $(n=4,\ m=2)$

Фрагменты плоскостей \mathcal{E}_{n-m-1} в плоскости \mathcal{E}_{n-m} , в свою очередь, есть многогранники с гранями порядка n-m-2. Пересечения фрагментов плоскостей \mathcal{E}_{n-m-1} в углах многогранника — тоже фрагменты плоскостей \mathcal{E}_{n-m-2} — грани порядка n-m-2 и т. д. Вершина многогранника \mathcal{M} как пересечение его ребер (граней первого порядка, фрагментов плоскостей \mathcal{E}_1) есть грань нулевого порядка многогранника \mathcal{M} .

Пусть множество P направлений в плоскости \mathcal{E}_{n-m} содержит направления из множества L. Тогда фрагмент \mathcal{M} может быть представлен как множество лучей (из любой точки $\mathbf{X} \in \mathcal{M}$ можно провести луч во фрагменте \mathcal{M} в направлении $\mathbf{G} \in L \cap P$), фрагмент \mathcal{M} — усеченный конус; пример — на рис. 2- δ .

Из того, что в E_n можно опустить перпендикуляр на подпространство [2], следует: в E_n существует ортогональная проекция множества точек на прямую \mathcal{E}_1 , проходящую через точку О. Варианты фрагментов \mathcal{M} дают возможность сделать заключение, что ортогональной проекцией в E_n фрагмента \mathcal{M} на прямую \mathcal{E}_1 , множество P направлений которой содержит направление $\mathbf{C}/|\mathbf{C}|$, может быть:

- точка; целевая функция $(\mathbf{C}, \mathbf{X}) = const, \mathbf{X} \in \mathcal{M}$, то есть решение $3\Pi\Pi$ весь фрагмент \mathcal{M} ;
- отрезок $[X_1, X_2]$; точки фрагмента \mathcal{M} , проекциями которых является начало отрезка X_1 (отрезок, как вектор с концом в X_2 , имеет направление $\mathbf{C}/|\mathbf{C}|$), составляют решение $\Im\Pi\Pi$;
- луч; если направление луча совпадает с направлением $\mathbf{C}/|\mathbf{C}|$, то точки фрагмента \mathcal{M} , проекциями которых является начало луча, составляют решение ЗЛП, иначе ЗЛП не имеет решения $(\mathbf{C}, \mathbf{X}) \to -\infty$;
 - вся прямая; ЗЛП не имеет решения $(\mathbf{C}, \mathbf{X}) \to -\infty$.

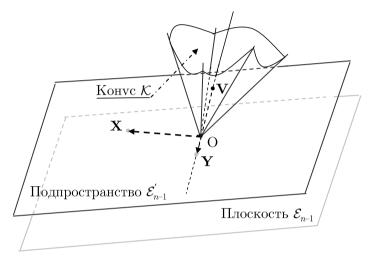
Bывод. Если целевая функция на множестве \mathcal{M} не убывает неограниченно, то решение $3Л\Pi$ — либо весь фрагмент \mathcal{M} , либо грань фраг-

⁷Невырожденный случай.

Математика • 81

мента \mathcal{M} . Грань фрагмента \mathcal{M} лежит в плоскости $(\mathbf{C}, \mathbf{X}) = z$, сам фрагмент \mathcal{M} расположен в полупространстве $(\mathbf{C}, \mathbf{X}) \geqslant z$. Наиболее вероятное решение $3\Pi\Pi$ — вершина многогранной области \mathcal{M} .

Предложение 2. Если множество допустимых решений $\mathcal{M}_0 \subset \mathcal{E}'_{n-m}$ в соответствующей полностью вырожденной задаче (задаче с приведенной системой системы уравнений (2)) есть точка О [1], то в ЗЛП множество \mathcal{M} пусто, когда можно построить подпространство \mathcal{E}'_{n-1} , $\mathcal{E}'_{n-m} \subset \mathcal{E}'_{n-1}$, которое делит пространство \mathcal{E}_n на два полупространства таким образом, что вектор $\mathbf{X} \notin \mathcal{E}'_{n-m}$ сдвига подпространства \mathcal{E}'_{n-m} и конус \mathcal{K} лежат в разных полупространствах.



 $Puc.\ 3.\ Иллюстрация\ сдвига\ подпространства^{8}\ (n=5)$

Пусть подпространство \mathcal{E}'_{n-1} построено. После сдвига подпространства \mathcal{E}'_{n-1} на вектор \mathbf{X} получается плоскость \mathcal{E}_{n-1} . Точка \mathbf{Y} — точка пересечения прямой, проведенной через точки \mathbf{O} и $\mathbf{V}=(1,1,\ldots,1)$, с плоскостью \mathcal{E}_{n-1} . Так как точка \mathbf{X} и конус \mathcal{K} лежат в разных полупространствах, а \mathcal{E}'_{n-1} и \mathcal{E}_{n-1} параллельны, то $\mathbf{Y}=(-a,-a,\ldots,-a),\ a>0$.

Оценим \mathcal{E}_{n-1} , воспользовавшись другим частным 9 решением — числовой строкой \mathbf{Y} .

При сдвиге подпространства \mathcal{E}'_{n-1} к каждой координатной строке точки подпространства \mathcal{E}'_{n-1} прибавляется числовая строка вектора сдвига. Сдвиг точки О $(0,0,\ldots,0)+(-a,-a,\ldots,-a)$ приводит к точке \mathbf{Y} с отрицательными координатами. При последующем вычислении сдвинутого подпространства прибавлением $(-a,-a,\ldots,-a)$ к координатным строкам любой другой точки подпространства \mathcal{E}'_{n-1} невозможно получить числовую строку, состоящую из неотрицательных чисел, так как в подпространстве \mathcal{E}'_{n-1} точка О — единственная точка, у которой все координаты неотрицательные. Поэтому в сдвинутом подпространстве \mathcal{E}_{n-1} нет точек с неотрицательными координатами.

 $^{^{8}}$ Условное изображение подпространства [3] и конуса; на рисунке лишь ребра и пять из десяти двумерных граней конуса.

 $^{^{9}}$ Множество числовых строк \mathcal{E}_{n-1} есть множество решений неоднородного линейного уравнения.

Следовательно, и в плоскости $\mathcal{E}_{n-m} \subset \mathcal{E}_{n-1}$ нет точек с неотрицательными координатами, а конус \mathcal{K} состоит только из точек с неотрицательными координатами. Поэтому множество $\mathcal{M} = \mathcal{E}_{n-m} \cap \mathcal{K}$ пусто.

Предложение 3. Если конус $\mathcal{M}_0 \subset \mathcal{E}'_{n-m}$ [1] в соответствующей полностью вырожденной задаче (приведенная система системы уравнений (2)) состоит только из лучей, принадлежащих грани конуса \mathcal{K} , то в ЗЛП множество \mathcal{M} пусто, когда можно построить подпространство \mathcal{E}'_{n-1} , $\mathcal{E}'_{n-m} \subset \mathcal{E}'_{n-1}$, которое делит пространство \mathbf{E}_n на два полупространства таким образом, что вектор $\mathbf{X} \notin \mathcal{E}'_{n-m}$ сдвига подпространства \mathcal{E}'_{n-m} и конус \mathcal{K} лежат в разных полупространствах.

Любая точка $\mathbf{X} \notin \mathcal{M}_0$ подпространства \mathcal{E}'_{n-m} имеет отрицательную координату. Хотя в множестве $\mathcal{M}_0 \subset \mathcal{E}'_{n-m}$ все числовые строки состоят из неотрицательных чисел, у каждой точки конуса \mathcal{M}_0 есть координата со значением 0, так как все лучи в конусе \mathcal{M}_0 принадлежат грани конуса \mathcal{K} . После аналогичного рассмотренному выше сдвига подпространства \mathcal{E}'_{n-1} на вектор \mathbf{Y} (прибавлением к координатным строкам точек подпространства \mathcal{E}'_{n-1} числовой строки $(-a,-a,\ldots,-a)$) в координатных строках точек сдвинутого множества \mathcal{M}_0 окажутся отрицательные числа -a (на местах нулей). После сдвига остальных точек \mathcal{E}'_{n-m} в суммах числовых строк сохранятся отрицательные значения. Следовательно, в плоскости \mathcal{E}_{n-m} нет точек с неотрицательными значениями координат, $\mathcal{M} = \varnothing$.

Если же в конусе \mathcal{M}_0 есть луч с направлением $G \in L$, не принадлежащий грани конуса \mathcal{K} , то множество \mathcal{M} непусто, так как луч, проведенный в E_n из любой точки $\mathbf{X} \notin \mathcal{K}$ в этом направлении, пересекает грань конуса \mathcal{K} .

Bывод. В ЗЛП множество \mathcal{M} пусто тогда и только тогда, когда в соответствующей полностью вырожденной задаче (приведенная система системы уравнений (2)) плоскость \mathcal{E}'_{n-m} касается конуса \mathcal{K} по его грани, а вектор сдвига подпространства \mathcal{E}'_{n-m} отодвигает подпространство \mathcal{E}'_{n-m} от конуса \mathcal{K} .

Библиографический список

- 1. Вялов А. Ф. Симплекс-алгоритм и полностью вырожденная задача // Вестник Ивановского государственного университета. Сер.: Естественные, общественные науки. 2018. Вып. 2. С. 62–65.
- 2. *Гельфанд И. М.* Лекции по линейной алгебре. 5-е изд., испр. М.: Добросвет, МЦНМО, 1998. 320 с.
- 3. *Шилов Г. Е.* Математический анализ. Конечномерные линейные пространства. М.: Наука, 1969. 432 с.
- 4. Юдин Д. Б., Гольштейн Е. Г. Линейное программирование. М: ГИФМЛ, 1963. 775 с.