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Strictly positive modal formulas

The language of modal logic extends that of propositional calculus
by a family of unary connectives {3i : i ∈ I}.

Strictly positive modal formulas are defined by the grammar:

A ::= p | > | (A ∧ A) | 3iA, i ∈ I .

We are interested in the implications A→ B where A and B are
strictly positive.



Strictly positive logics

Strictly positive fragment of a modal logic L is the set of all
implications A→ B such that A and B are strictly positive
and L ` A→ B .

Strictly positive logics are consequence relations on the set of
strictly positive modal formulas.
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Basic strictly positive logic

We derive sequents of the form A ` B with A, B s.p.

K+: the s.p. fragment of K
1 A ` A; A ` >; from A ` B and B ` C infer A ` C ;
2 A ∧ B ` A,B; from A ` B and A ` C infer A ` B ∧ C ;
3 from A ` B infer 3A ` 3B .

Fact. K+ is closed under substitution and positive replacement:
if A(p) ` B(p) then A(C ) ` B(C );
if A ` B then C (A) ` C (B).
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Normal positive logics

A normal s.p. logic is a set of sequents closed under the rules of K+

and the substitution rule.

Other standard logics:
(4) 33A ` 3A;

(T) A ` 3A;
(5) 3A ∧3B ` 3(A ∧3B).



Semilattices with monotone operators

We consider lower semilattices with top equipped with a family of
unary operators A = (A;∧, 1, {3i : i ∈ I}) where each 3i is a
monotone operator.

An operator R : A→ A is:
monotone if x ≤ y implies R(x) ≤ R(y);
semi-idempotent if R(R(x)) ≤ R(x);
closure if R is m., s.i. and x ≤ R(x).

We call such structures SLO.



Algebraic semantics

We identify s.p. formulas and SLO terms. Then each sequent
A ` B represents an inequality (i.e. the identity A ∧ B = A):

A ` B holds in A if A � ∀~x (A(~x) ≤ B(~x)).

Facts:
A ` B is provable in K+ iff A ` B holds in all SLO A.
Varieties of SLO = normal strictly positive logics.



Gödel’s 2nd Incompleteness Theorem

A theory T is Gödelian if
Natural numbers and operations + and · are definable in T ;
T proves basic properties of these operations (contains EA);
There is an algorithm (and a Σ1-formula) recognizing the
axioms of T .

Con(T ) = ‘T is consistent’

K. Gödel (1931): If a Gödelian theory T is consistent, then Con(T )
is true but unprovable in T .



Semilattice of Gödelian theories

Def. GEA is the set of all Gödelian extensions of EA mod =EA.

S ≤EA T ⇐⇒ EA ` ∀x (2T (x)→ 2S(x));

S =EA T ⇐⇒ (S ≤EA T and T ≤EA S).

Then (GEA,∧EA, 1EA) is a lower semilattice with 1EA = EA and
S ∧EA T := S ∪ T
(defined by the disjunction of the Σ1-definitions of S and T )



Reflection principles

Let T be a Gödelian theory.

Reflection principles Rn(T ) for T are arithmetical sentences
expressing “every Σn-sentence provable in T is true” .

Rn(T ) can be seen as a relativization of the consistency assertion
Con(T ) = R0(T ).

Every formula Rn induces a monotone semi-idempotent
operator Rn : T 7−→ Rn(T ) on GEA.
We consider the SLO (GEA;∧EA, 1EA, {Rn : n ∈ ω}).
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Reflection calculus RC

RC axioms (over K+ for all 3n):
1 3n3nA ` 3nA;
2 3nA ` 3mA for n > m;
3 3nA ∧3mB ` 3n(A ∧3mB) for n > m.

Example. 33> ∧3233p ` 33(> ∧3233p) ` 333233p.



Main results on RC

Theorems (E. Dashkov, 2012).
1 A `RC B iff A ` B holds in (GPA;∧PA, 1PA, {Rn : n ∈ ω});
2 RC is polytime decidable;
3 RC enjoys the finite model property (многообразие конечно

аппроксимируемо).

Rem. The first claim is based on Japaridze’s (1986) arithmetical
completeness theorem for provability logic GLP.
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RC 0 as an ordinal notation system

Let RC 0 denote the variable-free fragment of RC .
Let W denote the set of all RC 0-formulas. For A,B ∈W define:

A ∼ B if A ` B and B ` A in RC 0;
A <n B if B ` 3nA.

Theorem.
1 Every A ∈W is equivalent to a word (formula without ∧);
2 (W /∼, <0) is isomorphic to (ε0, <).

Rem. ε0 = sup{ω, ωω, ωωω
, . . . } is the characteristic ordinal of

Peano arithmetic.



Conservativity modalities

We consider operators associating with a theory S the theory
generated by its consequences of logical complexity Πn+1:

Πn+1(S) := {π ∈ Πn+1 : S ` π}.

Notice that each Πn+1 is a closure operator.

We consider the SLO (GEA;∧EA, 1EA, {Rn,Πn+1 : n ∈ ω}), the
RC∇ algebra of EA.

Open problem: Characterize the logic/identities of this structure. Is
it (polytime) decidable?
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Why conservativity?

Comparison of theories:
U ` Rn(T ) means U is much stronger than T .
U ` Πn+1(T ) means T is Πn+1-conservative over U.
Πn+1(U) = Πn+1(T ) means T and U are equivalent up to
quantifier complexity Πn+1.

The logic combining both Rn and Πn+1 is able to express both the
distance and the proximity of theories.

Ex. (U. Schmerl, 1979) Π2(PA) = Rε01 (EA).
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Results

A strictly positive logic RC∇ that is conjecturally complete;
Expressibility of transfinitely iterated reflection up to ε0;
Arithmetical completeness and decidability of the variable-free
fragment of RC∇;
A (constructive) characterization of the Lindenbaum–Tarski
algebra of the variable-free fragment;
A relation of this algebra to proof-theoretic ordinals of
arithmetical theories (conservativity spectra).



The system RC∇

RC∇ is a strictly positive logic with modalities {3n,∇n : n ∈ ω}
(3n for Rn, ∇n for Πn+1).

Axioms and rules:

1 RC for 3n;
2 RC for ∇n;
3 A ` ∇nA; thus, each ∇n satisfies S4+;
4 3nA ` ∇nA;
5 3m∇nA ` 3mA if m ≤ n;
6 ∇n3mA ` 3mA if m ≤ n.



Transfinite iterations

Def. R : GT → GT is computable if it can be defined by a
computable map on the Gödel numbers of numerations (of
extensions of T ).

Suppose (Ω,≺) is an elementary recursive well-ordering and R is a
computable m.s.i. operator on GT .

Theorem
There exist theories Rα(S) (where α ∈ Ω):
R0(S) =T S and, if α � 0,

Rα(S) =T
⋃
{R(Rβ(S)) : β ≺ α}.

Each Rα is computable and m.s.i.. Under some natural additional
conditions the family Rα is unique modulo provable equivalence.
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Expressibility of iterations

Let EA+ = I∆0(supexp) = EA + R1(EA).

Theorem
For each n < ω and 0 < α < ε0 there is an RC-formula A(p) s.t.

∀S ∈ GEA+ 3α
n (S) =EA+ ∇nA(S).

For example, ∇03130ϕ is arithmetically equivalent to
{31+n

0 ϕ : n < ω}.



Ignatiev RC∇-algebra

Named after K. Ignatiev who introduced a universal Kripke model
for Japaridze’s logic based on sequences of ordinals (1993).

I is the set of all ω-sequences ~α = (α0, α1, . . . ) such that
αi < ε0 and αi+1 ≤ `(αi ), for all i ∈ ω.
`(β) = 0 if β = 0, and `(β) = γ if β = δ + ωγ , for some δ, γ.
~α ≤I

~β ⇐⇒ ∀i αi ≥ βi .

Fact. The ordering (I ,≤I) is a meet-semilattice.
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Ignatiev RC∇-algebra

We define the functions ∇I
n,3

I
n : I → I .

For each ~α = (α0, α1, . . . , αn, . . . ) let
∇I

n(~α) := (α0, α1, . . . , αn, 0, . . . );
3I

n(~α) := (β0, β1, . . . , βn, 0, . . . ), where βn+1 := 0 and
βi := αi + ωβi+1 , for all i ≤ n.

Fact. The SLO I = (I ,∧I, {3I
n,∇I

n : n ∈ ω}) is an RC∇-algebra.
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Back to arithmetic

Let G0
EA denote the subalgebra of

(GEA;∧EA, 1EA, {Rn,Πn+1 : n ∈ ω}) generated by 1EA.

Theorem
The following structures are isomorphic:

1 G0
EA;

2 The free 0-generated RC∇-algebra;
3 I = (I ,∧I, {3I

n,∇I
n : n ∈ ω}).
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Conservativity spectra

Let S be a Gödelian extension of EA and (Ω, <) a (natural)
elementary recursive well-ordering.

Π0
n+1-ordinal of S , denoted ordn(S), is the sup of all α ∈ Ω

such that S ` Rαn (EA);
Conservativity spectrum of S is the sequence (α0, α1, α2, . . . )
such that αi = ordi (S).

Examples of spectra:
IΣ1 : (ωω, ω, 1, 0, 0, . . . )
PA : (ε0, ε0, ε0, . . . )
PA + PH : (ε20, ε0 · 2, ε0, ε0, . . . )
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Spectra and I

An extension T of EA is bounded, if T is contained in a finite
subtheory of PA.

Theorem

1 Let T be bounded and ~α be the conservativity spectrum of T .
Then ∀n < ω αn+1 ≤ `(αn) and αn < ε0, that is, ~α ∈ I.

2 Let ~α ∈ I, A be a variable-free RC∇-formula corresponding to
~α via the isomorphism, and AEA ∈ G0

EA its arithmetical
interpretation. Then ~α is the conservativity spectrum of AEA.

3 AEA is the weakest theory with the given conservativity
spectrum ~α.
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Conclusion

The set of Gödelian extensions of EA obtained from 1EA by
the operations of Σn-reflection and Πn+1-conservativity forms
a natural semilattice with monotone operators satisfying the
identities of RC∇.
The algebra has several natural (isomorphic) presentations
including the free 0-generated RC∇-algebra. It bijectively
corresponds to the set of all conservativity spectra of bounded
extensions of EA.
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