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Strictly positive modal formulas

The language of modal logic extends that of propositional calculus
by a family of unary connectives {<; : i € [}.

Strictly positive modal formulas are defined by the grammar:
Az=p|T|I(ANA)|C/A, i€l

We are interested in the implications A — B where A and B are
strictly positive.



Strictly positive logics

o Strictly positive fragment of a modal logic L is the set of all
implications A — B such that A and B are strictly positive
and L A— B.



Strictly positive logics

o Strictly positive fragment of a modal logic L is the set of all
implications A — B such that A and B are strictly positive
and L A— B.

e Strictly positive logics are consequence relations on the set of
strictly positive modal formulas.



Basic strictly positive logic

We derive sequents of the form A B with A, B s.p.

K™T: the s.p. fragment of K

Q@ AFA; ART; fromAF Band BF Cinfer Al C;
Q@ ANBFAB; fromAF Band AF Cinfer AF BAC;
@ from Al B infer CAF OB.



Basic strictly positive logic

We derive sequents of the form A B with A, B s.p.

K™T: the s.p. fragment of K

Q@ AFA; ART; fromAF Band BF Cinfer Al C;
Q@ ANBFAB; fromAF Band AF Cinfer AF BAC;
@ from Al B infer CAF OB.

Fact. KT is closed under substitution and positive replacement:
e if A(p) - B(p) then A(C) - B(C);
e if A B then C(A) - C(B).



Normal positive logics

A normal s.p. logic is a set of sequents closed under the rules of K™
and the substitution rule.

Other standard logics:

(4) OCCAE OA;

(T) AE CA;

(5) CANOBECO(ANOB).



Semilattices with monotone operators

We consider lower semilattices with top equipped with a family of
unary operators 2 = (A; A, 1,{<; 1 i € 1}) where each ¢ is a
monotone operator.

An operator R : A — 2 is:
e monotone if x <y implies R(x) < R(y);
o semi-idempotent if R(R(x)) < R(x);
e closure if R is m., s.i. and x < R(x).
We call such structures SLO.



Algebraic semantics

We identify s.p. formulas and SLO terms. Then each sequent
At B represents an inequality (i.e. the identity AA B = A):

@ At B holds in 2 if A F VX (A(X) < B(X)).
Facts:

e Al B is provable in KT iff A+ B holds in all SLO 2.

o Varieties of SLO = normal strictly positive logics.



Godel’s 2nd Incompleteness Theorem

A theory T is Godelian if
@ Natural numbers and operations + and - are definable in T;
e T proves basic properties of these operations (contains EA);

@ There is an algorithm (and a X;-formula) recognizing the
axioms of T.

Con(T) ="'T is consistent’

K. Godel (1931): If a Godelian theory T is consistent, then Con(T)
is true but unprovable in T.



Semilattice of Gddelian theories

Def. &gp is the set of all Godelian extensions of EA mod =ga.
S<ea T < EAFVx (DT(X) — DS(X));

S=A T — (5 <ea T and T <ga 5)

Then (&ga, Aea, Lga) is a lower semilattice with 1ga = EA and

SANeEa T =SUT
(defined by the disjunction of the ¥;-definitions of S and T)



Reflection principles

Let T be a Godelian theory.

o Reflection principles R,(T) for T are arithmetical sentences
expressing ‘every X ,-sentence provable in T is true”.

Rn(T) can be seen as a relativization of the consistency assertion
Con(T) = Ro(T).



Reflection principles

Let T be a Godelian theory.

o Reflection principles R,(T) for T are arithmetical sentences
expressing ‘every X ,-sentence provable in T is true”.

Rn(T) can be seen as a relativization of the consistency assertion
Con(T) = Ro(T).
o Every formula R, induces a monotone semi-idempotent
operator R, : T —— Ry(T) on Gga.
o We consider the SLO (Bga; Aga, 1ga, {Rn i n € w}).



Reflection calculus RC

RC axioms (over KT for all <)):
Q CpOAE OUA;
Q C,AF LA for n > m;
Q@ CLANCLBE OH(ANO,B) for n > m.

Example. O3T A OxO3p <>3(T A <>2<>3p) F O30,03p.



Main results on RC

Theorems (E. Dashkov, 2012).

@ Abgc Biff A B holds in (&pa; Apa, lpa, {Rn: n € w});
@ RC is polytime decidable;

@ RC enjoys the finite model property (MHoroobpasme koHe4Ho
annpoKcMMMpyemo).



Main results on RC

Theorems (E. Dashkov, 2012).

Q@ Alpgc Biff AF B holds in (@PA; APA, 1pa, {Rn ne w});
@ RC is polytime decidable;

@ RC enjoys the finite model property (MHoroobpasme koHe4Ho
annpoKcMMMpyemo).

Rem. The first claim is based on Japaridze's (1986) arithmetical
completeness theorem for provability logic GLP.



RC® as an ordinal notation system

Let RCO denote the variable-free fragment of RC.

Let W denote the set of all RCO-formulas. For A, B € W define:
e A~Bif AFBand B+ Ain RCY;
e A<, Bif BF<C,A.

Theorem.
@ Every A € W is equivalent to a word (formula without A);
Q@ (W/~, <o) is isomorphic to (g9, <).

Rem. ¢ = sup{w,w®,w*”,...} is the characteristic ordinal of
Peano arithmetic.



Conservativity modalities

We consider operators associating with a theory S the theory
generated by its consequences of logical complexity M, 1:

Mpt1(S) :={m € Npy1: S+ 7}

Notice that each IM,.1 is a closure operator.



Conservativity modalities

We consider operators associating with a theory S the theory
generated by its consequences of logical complexity M, 1:

Mpt1(S) :=={m €Npy1:SkF 7}
Notice that each IM,.1 is a closure operator.

We consider the SLO (@EA; NEA, LEA, {Rn, Mpy1:n€ w}), the
RCY algebra of EA.

Open problem: Characterize the logic/identities of this structure. Is
it (polytime) decidable?



Why conservativity?

Comparison of theories:
e UF R,(T) means U is much stronger than T.
o Ut Mpy1(T) means T is M,y1-conservative over U.
@ My1(U) =MNpy1(T) means T and U are equivalent up to
quantifier complexity M,1.
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Why conservativity?

Comparison of theories:
e UF R,(T) means U is much stronger than T.
o UF My11(T) means T is I,,1-conservative over U.
@ My1(U) =MNpy1(T) means T and U are equivalent up to
quantifier complexity M,1.

The logic combining both R, and 1,11 is able to express both the
distance and the proximity of theories.

Ex. (U. Schmerl, 1979) M>(PA) = R{°(EA).



Results

o A strictly positive logic RCV that is conjecturally complete;
@ Expressibility of transfinitely iterated reflection up to eo;

o Arithmetical completeness and decidability of the variable-free
fragment of RCV;

@ A (constructive) characterization of the Lindenbaum—Tarski
algebra of the variable-free fragment;

o A relation of this algebra to proof-theoretic ordinals of
arithmetical theories (conservativity spectra).



The system RCY

RCY is a strictly positive logic with modalities {Cn, Vp:neuw}
(On for Ry, Vi, for Myi1).

Axioms and rules:

Q@ RC for Oy

@ RC for V,;

@ AR V,A; thus, each V,, satisfies S4T;
Q C,AFV,A

Q@ OV, AR LA m< n;

Q V,OnAF LA m< n.



Transfinite iterations

Def. R: &1 — &1 is computable if it can be defined by a
computable map on the Godel numbers of numerations (of
extensions of T).

Suppose (€2, <) is an elementary recursive well-ordering and R is a
computable m.s.i. operator on & .



Transfinite iterations

Def. R: &1 — &1 is computable if it can be defined by a
computable map on the Godel numbers of numerations (of
extensions of T).

Suppose (€2, <) is an elementary recursive well-ordering and R is a
computable m.s.i. operator on & .

Theorem
There exist theories RY(S) (where o € Q):
R(S) =7 S and, if a = 0,

RY(S) =1 U{R(R?(S)) : 8 =< a}.

Each R® is computable and m.s.i.. Under some natural additional
conditions the family R® is unique modulo provable equivalence.



Expressibility of iterations

Let EAT = /Ag(supexp) = EA + Ry (EA).

Theorem,
For each n < w and 0 < a < ¢q there is an RC-formula A(p) s.t.

VS S ®EA+ O%(S) —EAT VnA(S)

For example, V<$1<$0¢ is arithmetically equivalent to
{030 1 n < w}.



Ignatiev RCY -algebra

Named after K. Ignatiev who introduced a universal Kripke model
for Japaridze's logic based on sequences of ordinals (1993).

o | is the set of all w-sequences & = (v, a1, ... ) such that
aj < g and aj11 < U(«;), for all i € w.

@ /(B)=0if =0, and 4(B) =~ if B =0 + w?, for some 6, .
° &Sjg — Via; > j.



Ignatiev RCY -algebra

Named after K. Ignatiev who introduced a universal Kripke model
for Japaridze's logic based on sequences of ordinals (1993).

o | is the set of all w-sequences & = (v, a1, ... ) such that
aj < g and aj11 < U(«;), for all i € w.

@ /(B)=0if =0, and 4(B) =~ if B =0 + w?, for some 6, .
° &Sjg — Via; > j.

Fact. The ordering (/, <5) is a meet-semilattice.



Ignatiev RCYN -algebra

We define the functions V3, O30 : [ — |.

For each d = (ap, a1,...,p,...) let
(] VZ(O_Z) = (ao,al,...,an,O,...);

o OX@A) :=(Bo,B1,---,05n0,...), where 3,,1 := 0 and
Bi = a; + wPitt, for all i < n.



Ignatiev RCYN -algebra

We define the functions V3, O30 : [ — |.

For each d = (ap, a1,...,p,...) let
(] VZ(O_Z) = (ao,al,...,an,O,...);

o OX@A) :=(Bo,B1,---,05n0,...), where 3,,1 := 0 and
Bi = a; + wPitt, for all i < n.

Fact. The SLO J = (I, A5, {<O3, V3 : n € w}) is an RCV-algebra.



Back to arithmetic

Let &2, denote the subalgebra of
(Bea; Aeas 1ea, {Rn, Mpy1 i n € w}) generated by 1ga.



Back to arithmetic

Let &2, denote the subalgebra of
(Bea; Aeas 1ea, {Rn, Mpy1 i n € w}) generated by 1ga.

Theorem
The following structures are isomorphic:

(1) ®%A;
© The free O-generated RCV-algebra;
@ J=(I,N3,{03, VI :ncuw}).



Conservativity spectra

Let S be a Godelian extension of EA and (£, <) a (natural)
elementary recursive well-ordering.

e N2, -ordinal of S, denoted ord,(S), is the sup of all & € Q
such that S = RS (EA);

o Conservativity spectrum of S is the sequence (g, a1, a2, .. .)
such that «; = ord;(S).



Conservativity spectra

Let S be a Godelian extension of EA and (£, <) a (natural)
elementary recursive well-ordering.

e N2, -ordinal of S, denoted ord,(S), is the sup of all & € Q
such that S = RS (EA);

o Conservativity spectrum of S is the sequence (g, a1, a2, .. .)
such that «; = ord;(S).

Examples of spectra:

IY; 0 (w¥,w,1,0,0,...)

PA: (e0,€0,€0,---)

PA + PH : (53,60'2,80,80,...)



Spectra and J

An extension T of EA is bounded, if T is contained in a finite
subtheory of PA.

Theorem

@ Let T be bounded and @ be the conservativity spectrum of T.
Then Vn < w a1 < l(ap) and oy < €9, that is, @ € 7.
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@ via the isomorphism, and Aga € QigA its arithmetical
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Spectra and J

An extension T of EA is bounded, if T is contained in a finite
subtheory of PA.

Theorem

@ Let T be bounded and @ be the conservativity spectrum of T.
Then Vn < w a1 < l(ap) and oy < €9, that is, @ € 7.

© Let @ € J, A be a variable-free RCV-formula corresponding to
@ via the isomorphism, and Aga € QigA its arithmetical
interpretation. Then & is the conservativity spectrum of Aga.

@ Aga is the weakest theory with the given conservativity
spectrum &.



Conclusion

@ The set of Gddelian extensions of EA obtained from 1ga by
the operations of X ,-reflection and 1, 1-conservativity forms
a natural semilattice with monotone operators satisfying the
identities of RCV.



Conclusion

@ The set of Gddelian extensions of EA obtained from 1ga by
the operations of X ,-reflection and 1, 1-conservativity forms
a natural semilattice with monotone operators satisfying the
identities of RCV.

@ The algebra has several natural (isomorphic) presentations
including the free 0-generated RCV-algebra. It bijectively
corresponds to the set of all conservativity spectra of bounded
extensions of EA.



