ИвГУ, ф-т МиКН, курс 2

"КОМПЬЮТЕРНАЯ АЛГЕБРА"

Тема 7.

Кольца многочленов. Неприводимые многочлены

Лектор: Н. И. Яцкин, 2014

ФАКТОРИАЛЬНЫЕ КОЛЬЦА

КОЛЬЦА МНОГОЧЛЕНОВ

(над ФК, от одной переменной)

ЕВКЛИДОВЫ КОЛЬЦА

КОЛЬЦА МНОГОЧЛЕНОВ

(над полем, от одной переменной)

ФК:

Любой ненулевой и необратимый элемент однозначно (с точностью до порядка сомножителей и их ассоциированности) разлагается в произведение неразложимых элементов.

EK:

Заданы евклидова норма и алгоритм Евклида.

В примерах: кольца

И

Стиль записи многочленов (по возрастанию степеней):

$$f(x) = \sum_{i=0}^{n} f_i x^i =$$

$$= f_0 + f_1 x + \dots + f_{n-1} x^{n-1} + f_n x^n; f_n \neq 0.$$

Функция-степень:

$$f(x) \mapsto \deg(f(x)) = n$$

определена как *над полем* P, так и *над кольцом* L, но роль *евклидовой нормы* играет лишь в случае *поля*.

Обратимые многочлены суть обратимые скаляры, т. е.

над полем Р:

все *ненулевые* константы $\boldsymbol{c} \in \boldsymbol{P}^* = \boldsymbol{P} \setminus \{\boldsymbol{0}\};$

над кольцом L:

обратимые константы $c \in L^*$.

Многочлены ассоциированы ≡

отличаются обратимым множителем.

В частном случае $L = \mathbb{Z}$:

ассоциированы = равны или отличаются знаком.

Нормализованный многочлен ≡

старший коэффициент равен 1.

Над полем: любой многочлен можно нормализовать (заменить на ассоциированный нормализованный); над кольцом — не любой.

В частном случае $L = \mathbb{Z}$:

 $2x \nsim x$.

Содержание многочлена (над кольцом):

$$\operatorname{cont}(f) \in \operatorname{HOД}(f_0, f_1, \dots, f_n);$$

этот элемент определен с точностью до ассоциированности.

В частном случае $L=\mathbb{Z}$: содержание

$$cont(f) = (f_0, f_1, ..., f_n)$$

определено однозначно (является натуральным числом).

Примитивный многочлен = содержание

является обратимым элементом (ассоциировано с 1).

В частном случае $L = \mathbb{Z}$:

многочлен f(x) примитивен \Leftrightarrow cont(f) = 1.

Всякий многочлен представляется в виде:

$$f(x)=c\,\tilde{f}(x),$$

где $c = \operatorname{cont}(f)$, $\tilde{f}(x)$ - nримитивный многочлен.

Теорема 1 (лемма Гаусса).

Произведение двух

примитивных многочленов

является примитивным

многочленом.

Доказательство (для случая $L = \mathbb{Z}$).

От противного: пусть

$$f(x) = \sum_{i=0}^{n} f_i x^i \ (f_n \neq 0)$$

И

$$g(x) = \sum_{j=0}^m g_j x^j \ (g_m \neq 0)$$

- *примитивны*, т. е. коэффициенты каждого из них взаимно просты.

Рассмотрим произведение

$$h(x) = f(x)g(x) = \sum_{k=0}^{n+m} h_k x^k,$$

где старший коэффициент

$$\boldsymbol{h}_{n+m} = \boldsymbol{f}_n \, \boldsymbol{g}_m \, .$$

Если h(x) не примитивен, то существует простое натуральное число p, делящее все h_k .

По предположению, p не может делить все f_i и все g_j ; так что существует *крайние слева* коэффициенты f_{i_0} и g_{j_0} , *не делящиеся* на p. Вычислим коэффициент h_{k_0} , где $k_0 = i_0 + j_0$:

$$h_{k_0} = \sum_{i=0}^{i_0-1} f_i g_{k_0-i} + f_{i_0} g_{j_0} + \sum_{i=i_0+1}^{k_0} f_i g_{k_0-i}.$$

По предположению, все коэффициенты f_i ($i < i_0$), все коэффициенты g_{k_0-i} ($i > i_0$), а также h_{k_0} делятся на p; значит, делится на p произведение $f_{i_0}g_{j_0}$, что, в силу простоты p, приводит к противоречию: хотя бы один из коэффициентов, f_{i_0} или g_{j_0} , делится на p.

Теорема 2 (свойство содержания).

Содержание произведения двух многочленов равно произведению содержаний сомножителей: $\operatorname{cont}(f \cdot g) = \operatorname{cont}(f) \cdot \operatorname{cont}(g)$.

Доказательство (для случая $L = \mathbb{Z}$). Перемножив равенства $f(x) = c \, \tilde{f}(x)$, и $g(x) = d \, \tilde{g}(x)$, где c = cont(f), d = cont(g), а $\tilde{f}(x)$ и $\tilde{g}(x)$ - примитивны, получим $f(x)g(x) = cd \, \tilde{f}(x)\tilde{g}(x)$. В силу леммы Гаусса, многочлен $\tilde{f}(x)\tilde{g}(x)$ — также примитивен и, следовательно, cont(fg) = cd. ■

Задача 1. Представить процедуру вычисления *содержания* c = cont(f) и *примитивной части* $\tilde{f} = \text{prim}(f)$ для целочисленного многочлена $f(x) = c \, \tilde{f}(x)$.

> ContPrim:=proc(f::polynom(integer),x::name)
Можно использовать функции:

igcd(a) — возвращает **HO**Д последовательности **a** целых чисел; **coeff(f,x,i)** — возвращает коэффициент при **i**-ой степени **x** в многочлене **f**.

Решение.

```
> ContPrim:=proc(f::polynom(integer),x::name)
  local cl,cf,prf;
if f=0 then
  RETURN (NULL);
else
  cl:=seq(coeff(f,x,i),i=0..degree(f,x));
  cf:=igcd(cl);
  prf:=sort(simplify(f/cf),x);
  RETURN (cf, prf);
end if;
end proc;
```

Примеры применения.

```
> ContPrim(-3,x);

ContPrim(4*x^10+2*x^4-6,x);

ContPrim(5*x^4-3*x^2+2*x+2,x);

ContPrim((1/2)*x^100-1,x);

3,-1

2,2x^{10}+x^4-3

1,5x^4-3x^2+2x+2
```

Error, invalid input: ContPrim expects its 1st argument, f, to be of type polynom(integer), but received $1/2*x^100-1$

Факториальность колец многочленов влечет тот факт, что

$$\Pi \ni \Leftrightarrow H \ni$$
.

Напоминание:

НЭ (*неразложимый* элемент a):

$$[a = b \cdot c] \Rightarrow [(b \text{ обратим}) \lor (c \text{ обратим})]$$

 Π **Э** (*простой* элемент a):

$$[a \mid b \cdot c] \Rightarrow [(a \mid b) \lor (a \mid c)]$$

Многочлен f(x) неразложим в кольце многочленов \Leftrightarrow его нельзя представить в виде произведения двух необратимых многочленов.

Общий случай многочленов над полем.

- Все многочлены *нулевой* степени (ненулевые константы) *обратимы*.
- Многочлен *положительной* степени *неразложим* ⇔ не представляется в виде произведения двух многочленов *меньшей* степени. Такие многочлены называются *неприводимыми*.
 - Многочлены степени 1 неприводимы (над любым полем).

Конкретно **над полем** (или, вообще, - над любым *алгебраически замкнутым* полем): *неприводимы* только многочлены степени 1.

Конкретно над полем \mathbb{R} :

неприводимы:

- (1) многочлены степени 1;
- (2) многочлены степени 2 с отрицательным дискриминантом.

Конкретно над полем Q:

неприводимые многочлены имеются в любой положительной степени. (Доказательство см. ниже.)

Случай многочленов над (факториальным) кольцом.

- Не все многочлены нулевой степени обратимы. Среди необратимых констант имеются неразложимые. Всякая (ненулевая и необратимая) константа является произведением неразложимых констант.
- Многочлен *положительной* степени представляется в виде $f(x) = c \, \tilde{f}(x)$, где $c = \operatorname{cont}(f)$, а $\tilde{f}(x) nримитивен$.

f(x) неразложим

содержание c является обратимой константой, а примитивная часть $\tilde{f}(x)$ неразложима

Неприводимыми многочленами (над кольцом) считаются многочлены положительной степени, не представимые в виде произведения двух многочленов **меньшей степени**. При таком подходе **неприводимость** не влечет **неразложимость** (нужна еще **примитивность**).

Конкретно над **кольцом** \mathbb{Z} : *неразложимыми* элементами кольца $\mathbb{Z}[x]$ являются:

- (1) простые целые числа (константы);
- (2) *примитивные неприводимые* многочлены положительной степени.

Например, многочлен 2x + 3 неразложим, а многочлен 2x + 2 = 2(x + 1) разложим (он неприводим, но не является примитивным).

(Ниже будет доказано, что в любой степени существуют неприводимые примитивные многочлены над \mathbb{Z} .)

Переход к полю частных

Поле частных F целостного кольца L состоит из классов эквивалентности *несократимых* дробей $\frac{a}{b}$, где $a,b \in L; b \neq 0$, а эквивалентность понимается следующим образом:

$$\left[\frac{a}{b} \sim \frac{c}{d}\right] \Leftrightarrow [ad = bc].$$

Всякий многочлен над L можно рассматривать над F.

Всякий многочлен над \mathbf{F} представляется в виде произведения некоторой константы, принадлежащей \mathbf{F} , и некоторого многочлена (причем – *примитивного*) с коэффициентами из \mathbf{L} .

Установим связь понятий *неприводимости* для *примитивного* многочлена $f(x) \in L[x]$:

над кольцом L

И

над полем F.

Изложение (для простоты) ведется в простейшем случае:

$$L=\mathbb{Z};F=\mathbb{Q},$$

это позволяет считать содержание и примитивную часть однозначно определенными.

С каждым *рациональным* многочленом ассоциирован некоторый примитивный *целочисленный* многочлен $f(x) \in \mathbb{Q}[x]$, который представляется в виде

$$f(x) = \frac{1}{d}\tilde{f}(x) = \frac{c}{d}\tilde{\tilde{f}}(x),$$

где

d – наименьший общий знаменатель коэффициентов f(x),

 $\tilde{f}(x)$ – многочлен с целыми коэффициентами,

 $c = \operatorname{cont}(\tilde{f}) - \operatorname{codeржаниe}$ этого многочлена,

 $\tilde{\tilde{f}}(x)$ – *примитивный* многочлен с целыми коэффициентами.

Рациональное число $\frac{c}{d}$ будем называть *рациональным содержанием* многочлена f(x).

Неприводимость

? (над **Z**)⇔(над **Q**) ?

В сторону \leftarrow утверждение очевидно: если f(x) многочлен положительной степени, приводим над \mathbb{Z} , то он приводим и над \mathbb{Q} ; значит, неприводимость над \mathbb{Q} влечет неприводимость над \mathbb{Z} .

B сторону \Rightarrow .

Пусть $f(x) \in \mathbb{Z}[x]$ примитивен и приводим над \mathbb{Q} ,

т. е. разлагается на два необратимых множителя в кольце $\mathbb{Q}[x]$:

$$f(x) = g(x)h(x).$$

В каждом из множителей выделим рациональное содержание и примитивную целочисленную часть:

$$f(x) = \frac{c_1}{d_1} \frac{c_2}{d_2} \widetilde{\widetilde{g}}(x) \widetilde{\widetilde{h}}(x).$$

Произведение примитивных многочленов "с волнами" также является примитивным многочленом над **Z**. Избавляясь от знаменателей, получим:

$$d_1d_2f(x)=c_1c_2\widetilde{\widetilde{g}}(x)\widetilde{\widetilde{h}}(x),$$

что, с учетом примитивности f(x), влечет два равенства: $d_1d_2=c_1c_2$ и $f(x)=\widetilde{\tilde{g}}(x)\widetilde{\tilde{h}}(x)$. Значит, данный многочлен *приводим* над \mathbb{Z} ; неприводимость над \mathbb{Z} влечет неприводимость над \mathbb{Q} .

Таким образом, доказана

Теорема 3.

Примитивный целочисленный многочлен неприводим над **Z** тогда и только тогда, когда он неприводим над **Q**. ■

Замечание 1. По ходу доказательства выше дополнительно выяснилось, что исследование любого многочлена с рациональными коэффициентами на неприводимость сводится к исследованию соответствующего ему целочисленного многочлена.

Задача 2. Представить процедуру вычисления paquoнaльного содержания <math>c = cont(f) и npumumuвной $uacmu \tilde{f} = \text{prim}(f)$ для многочлена с рациональными коэффициентами $f(x) = c \tilde{f}(x)$.

> RatContPrim:=proc(f::polynom(rational),x::name)

Решение.

```
> RatContPrim:=proc(f::polynom(rational),x::name)
  local cl,dcl,b,ncl,a,rcf,prf;
if f=0 then
  RETURN (NULL);
else
  cl:=[seq(coeff(f,x,i),i=0..degree(f,x))];
  dcl:=map(z->denom(z),cl);
 b:=ilcm(dcl[]);
  ncl:=map(z->z*b,cl);
  a:=igcd(ncl[]);
  rcf:=a/b;
  prf:=sort(simplify(f/rcf),x);
  RETURN (rcf,prf);
end if;
end proc;
```

Примеры применения.

> f,g,h:=(4/3)*x^10+(2/5)*x^4-6/5,
(5/9)*x^4-(15/2)*x^2+10*x+25/3,
(1/21)*x^100-(2/33)*x+5;

$$f,g,h:=\frac{4}{3}x^{10}+\frac{2}{5}x^4-\frac{6}{5},\frac{5}{9}x^4-\frac{15}{2}x^2+10x+\frac{25}{3},\frac{1}{21}x^{100}-\frac{2}{33}x+5$$

> map(expr->[RatContPrim(expr,x)],[f,g,h]);
 $\left[\left[\frac{2}{15},10x^{10}+3x^4-9\right],\left[\frac{5}{18},2x^4-27x^2+36x+30\right],\left[\frac{1}{231},11x^{100}-14x+1155\right]\right]$

ПРИЗНАКИ НЕПРИВОДИМОСТИ

(для многочленов с целыми коэффициентами, допускают перенос на "абстрактный" случай)

Признак Эйзенштейна.

Теорема 4 (Эйзенштейн). *Пусть*

 $f(x) = f_0 + f_1 x + \dots + f_{n-1} x^{n-1} + f_n x^n \in \mathbb{Z}[x]$

многочлен положительной степени п.

Если существует простое натуральное число p, делящее все коэффициенты многочлена, кроме старшего, причем свободный член не делится на p^2 , то f(x) неприводим.

Доказательство. Предположим противное:

$$f(x) = g(x)h(x);$$
 (*)
 $g(x) = g_0 + gx + \dots + g_m x^m; g_m \neq 0;$
 $h(x) = h_0 + h_1 x + \dots + h_l x^l; h_l \neq 0;$
 $m, l > 0; m + l = n.$

Приравняем свободные члены в (*):

$$f_0 = g_0 h_0.$$

Имеем: $p|f_0$ и $p^2 \nmid f_0$; следовательно, справедлива *одна и только одна* из делимостей: $p|g_0$ или $p|h_0$. Пусть, для определенности, $p|g_0$ и $p \nmid h_0$.

Приравняем теперь старшие коэффициенты в (*):

$$f_n = g_m h_l$$
.

Имеем: $p \nmid f_n$ и, следовательно, $p \nmid g_m$ и $p \nmid h_l$.

Итак, p не может делить все коэффициенты g(x); пусть g_{j_0} – крайний слева из не делящихся на p коэффициентов g(x).

Приравняем в (*) коэффициенты при x^{j_0} :

$$f_{j_0} = g_0 h_{j_0} + g_1 h_{j_0-1} + \dots + g_{j_0-1} h_1 + g_{j_0} h_0$$
.

Левая часть делится на p (т. к. $j_0 \le m \le n$); в правой части все слагаемые, кроме последнего, также делятся на p.

В силу *простовы р*, последнее слагаемое не может делиться на p. Противоречие.

Следствие 1. Всякий двучлен $f(x) = x^n + pa$ (где n - натуральное, a - целое, p - простое, не делящее a) неприводим над \mathbb{Z} .

Следствие 2. Для любого натурального n существует неприводимый целочисленный многочлен степени n.

 $(Автоматически над <math>\mathbb{Q}$ оказывается справедливым аналогичный факт.)

Пример 1. Многочлен $f(x) = x^4 + 4$ *приводим* над \mathbb{Z} :

$$f(x) = x^4 + 4x^2 + 4 - 4x^2 = (x^2 + 2)^2 - (2x)^2 =$$
$$= (x^2 - 2x + 2)(x^2 + 2x + 2),$$

где оба квадратных трехчлена имеют дискриминант (-4) и поэтому *неприводимы* не только над *кольцом* \mathbb{Z} и *полем* \mathbb{Q} , но и над *полем* \mathbb{R} ; над *полем* \mathbb{C} они *приводимы*, многочлен f(x) имеет четыре комплексных *корня* $x_{1,2,3,4} = \pm 1 \pm i$ и следующее разложение на *линейные* множители:

$$f(x) = (x - (1+i))(x - (1-i))(x - (-1+i))(x - (-1-i)).$$

Пример 2. Многочлен $f(x) = x^4 + 2$ неприводим над \mathbb{Z} и над \mathbb{Q} в силу признака Эйзенштейна. Однако, если поле \mathbb{Q} расширить, присоединив к нему элемент $\alpha = \sqrt[4]{2}$, то f(x) окажется приводимым:

$$f(x)=x^4+2\sqrt{2}x^2+2-2\sqrt{2}x^2=\left(x^2+2^{1/2}\right)^2-\left(2^{3/4}x\right)^2=$$
 $=\left(x^2+lpha^2\right)^2-\left(lpha^3x\right)^2=\left(x^2-lpha^3x+lpha^2\right)(x^2+lpha^3x+lpha^2),$ где снова оба квадратных трехчлена имеют отрицательный

дискриминант $\alpha^6 - 4\alpha^2 = \alpha^6 - \alpha^{10} = \alpha^6 (1 - \alpha^4) = -\alpha^6$ и поэтому *неприводимы* над $\mathbb Q$ (и над $\mathbb R$).

Полное разложение f(x) будет достигнуто, если к полю \mathbb{Q} добавить два элемента $\{\alpha, i\}$, после чего f(x) будет иметь четыре корня

$$x_{1,2,3,4} = \frac{\alpha^3}{2} (\pm 1 \pm i)$$

и разложение:

$$f(x) = \left(x - \frac{\alpha^3}{2}(1+i)\right) \left(x - \frac{\alpha^3}{2}(1-i)\right) \left(x - \frac{\alpha^3}{2}(-1+i)\right) \left(x - \frac{\alpha^3}{2}(-1-i)\right).$$

Замечание 2. Ключевая идея теории полей: поля расширяются присоединением к ним корней неприводимых многочленов. Если к данному полю присоединить корни всех неприводимых многочленов над ним, то получится алгебраическое замыкание данного поля. Алгебраическим замыканием поля Q является поле

$$\mathbb{A} = \overline{\mathbb{Q}}$$

так называемых алгебраических чисел (являющихся корнями всевозможных многочленов с целыми коэффициентами).

Известный с первого семестра пример алгебраического замыкания:

$$\mathbb{C} = \overline{\mathbb{R}}$$
.

Замечание 3. Не все целочисленные многочлены могут быть исследованы на неприводимость с помощью признака Эйзенштейна. Используются другие, более сильные признаки.

Однофамильцы известного французского математика

Александр Дюма (отец) (фр. *Alexandre Dumas*, *père*; **1802** — **1870**) — французский писатель, чьи приключенческие романы сделали его одним из самых читаемых французских авторов в мире.



Александр Дюма (сын) (фр. *Alexandre Dumas fils*, **1824** —**1895**) — французский драматург и прозаик

JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES

"Геометрический"
признак Г. Дюма (1906),
использует так
называемые
многоугольники Ньютона.

G. DUMAS

Sur quelques cas d'irréductibilité des polynomes à coefficients rationnels

 $\label{lower} \emph{Journal de mathématiques pures et appliquées 6^e série$, tome 2 (1906), p. 191-258.} \\ $$ \http://portail.mathdoc.fr/JMPA/afficher_notice.php?id=JMPA_1906_6_2_A5_0>$$$



Теорема 5 (Основная теорема алгебры многочленов).

Кольцо многочленов над факториальным кольцом само является факториальным, т. е. всякий ненулевой многочлен над факториальным кольцом однозначно (с точностью до порядка сомножителей и их ассоциированности) разлагается на неразложимые множители (среди которых могут присутствовать неразложимые константы и неприводимые примитивные многочлены положительной степени).

Доказательство см., например, в пособии *Н. И. Яцкин. Алгебра:* **Теоремы и алгоритмы**. *Иваново: ИвГУ, 2006* (с 427-428).

В следующей теме будет рассмотрен *тест Кронекера* на *неприводимость* целочисленного многочлена и *алгоритм Кронекера факторизации* (разложения на неприводимые множители) в кольце $\mathbb{Z}[x]$.

Леопольд Кронекер (нем. Leopold Kronecker; **1823** — **1891**) — немецкий математик. Был сторонником "арифметизации" математики, которая по его мнению, должна быть сведена к арифметике целых чисел; только последняя, как он утверждал, обладает подлинной реальностью.

Защищая эти взгляды, вёл упорную дискуссию с принципами *теоретико-функциональной* школы **К. Вейерштрасса** и *теоретико-множественной* школы **Г. Кантора**.

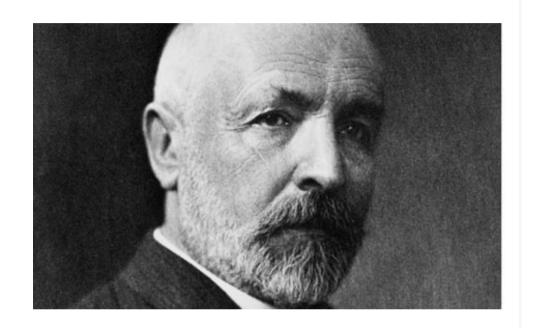
Следующее выражение Кронекера стало знаменитым:

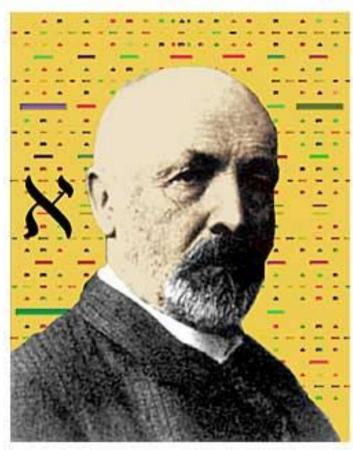
Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk.

Бог создал целые числа, всё остальное — дело рук человека.

Георг Кантор (нем. Georg Ferdinand Ludwig Philipp Cantor, 1845, Санкт-Петербург — 1918) — немецкий математик. Наиболее известен как создатель теории множеств, ставшей краеугольным камнем в математике.

Критика его трудов была порой очень агрессивна: так, **Пуанкаре** называл его идеи "*таукелой болезнью*", поражающей математическую науку; а в публичных заявлениях и личных выпадах **Кронекера** в адрес **Кантора** мелькали иногда такие эпитеты, как "научный шарлатан", "отступник" и "развратитель молодёжи".





Georg Cantor 1845-1918