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THE RESIDUAL FINITENESS OF CERTAIN
ONE-RELATOR GROUPS

R. B. J. T. ALLENBY, L. E. MOSER AND C. Y. TANG!

ABSTRACT. We prove that the groups <a, b; (a~'b'ab™)"), where I, m,t € Z
and ¢ > 2 are residually finite (5 F), thus establishing a conjecture of G.
Baumslag [Bull. Amer. Math. Soc. 73 (1967), 618—620).

1. Preliminaries.

LEMMA 1. Let G = <x;y; (xy™)>. Then if g € G \{x) there exists a
homomorphism T of G onto a finite group R such that gr & {xt) in R.

ProOOF. Let T = {y, z; z*>. Then T is LERF [5, p. 359]. Putting u = zy ™"
we get T =y, w™; (™)) =y, u; (™). Now form the generalized
free product (g.f.p.)

G % Gy (7)) = (x5 (<b7)) = G.
xX'=u
Suppose g € G \ {(x>. Then g can be expressed as a product
(yp)x® - -+ x"(y,,,) where each x* & (x'> and eachy, € T \<{x'). Since T
is LERF we can find for each y, a normal subgroup N, of finite index in T
such that y,N, & (x'N,>. The intersection N of all these N, is another
normal subgroup of finite index in T such that y, N & (x'N) for all (the
finitely many) k.
Form the generalized free product

S=<{(x)/(x)NN) * T/N.
<x'>/Kx">nN)
Letting bars denote images under the natural map from G onto S we see by a
“form of word” argument that g & (x) in S. But § is residually finite [3, p.
194] and so one easily finds a finite homomorphic image R of S in which the
image g lies outside the image of (X).
Clearly this result extends easily to

COROLLARY 2. Let G = {x,y; (x»™)'>. Given g,,...,8 € G\<{x) and
hy, ..., h, € G\ y) there exists a normal subgroup N* of finite index in G
such that g<{x) N N* = h<{y> N N* =@D.
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As a corollary of this we have
COROLLARY 3. G € F.

ProoF. Let 1 g € G.If g € {y) then g & {x) and so there exists N* as
in Corollary 2 such that g{x)> N N* = &. In particular g is not in N*. A
similar proof holds if g € G \ {(y) (whether g is in {x) or not).

LEMMA 4. Let G = {x,y; (x»™)>. Then given r € Z, where r is any
multiple of | and of m, there exists N < G such that |G : N| < oo, N N {x) =

(x") and N 0 {yy =<y7)-

PrOOF. Consider the group H = (g, h; (gh), g%, h#) where r = al = Bm.
Then H € pF [4, p. 425]. Thus H has, as a homomorphic image, the finite
group K = (g, h; (gh),g" h®, w(g, b)) in which g, h have orders a, 8
exactly.

Now form the g.f.p.

(x;x™*y % K= <x, hy (x'h), x, hB, w,(x/, h)> =1L,
xl=g
say. Now L € xF (being a g.fp. of finite groups) and so has a finite
homomorphic image

M= <x, By (x'R)', x*, B, w,(x', h), wi(x, h)>,
say, in which x has order a/ and 4 has order 8. Now form
U=M % (yiy™) = (xy; (xy"), x"ywix!,ym), wi(x, y™)).
h=y™

This too has a finite homomorphic image

V= <x,y; (x5™), x"y, wi(xy™), wix, »™), w{'(x,y))
in which x and y both have order r, exactly. Clearly ¥ is a homomorphic
image (under y, say) of G and if we set N =kery: G— V we see that
N N <{x> =<{x">, N n<{y)=<y") as required.

2. The main theorem.”
THEOREM 5. Let I, m, t € Z with t > 2. Then {a, b; (a~'b'ab™)"y € F.

ProOF. The given group is well known to be an HNN extension with base
group the z F group B = (b, b;; (b!bf™)">. Further the action of “a” on this
group is to conjugate b, onto b,. Thus there is an isomorphism ¢ from <b,)
onto {b,» coinciding with this action. Thus all the conditions set out in 4.1 of
[1] are satisfied, their “4”, “H”, “K” being our B, {b,>, {by), respectively.
Corollary 2 shows that condition 4.1(a) of [1] holds and if N* does not satisfy

2This theorem was also proved by B. Baumslag and F. Levin several months earlier. The proof
given here was done completely independently using an entirely different approach. It is much
shorter and perhaps a little crisper. In a communication with G. Baumslag he mentioned that he
has also obtained a similar result with a more involved proof.
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condition 4.1(b) immediately one readily amends N* by intersecting it with a
suitable N as given by Lemma 4.

REFERENCES

1. B. Baumslag and M. Tretkoff, Residually finite HNN extensions, Comm. Algebra 6 (1978),
179-194.
2. G. Baumslag, Residually finite one-relator groups, Bull. Amer. Math. Soc. 73 (1967), 618-620.

3. , On the residual finiteness of generalised free products of nilpotent groups, Trans.
Amer. Math. Soc. 106 (1963), 193-209.
4. , On generalised free products, Math. Z. 78 (1962), 423-438.

5. R. G. Burns, On finitely generated subgroups of free products, J. Austral. Math. Soc. 12 (1971),
358-364.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF LEEDS, LEEDS, LS2 9JT, ENGLAND
DEPARTMENT OF MATHEMATICS, CALIFORNIA STATE UNIVERSITY, HAYWARD, CALIFORNIA 94542

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF WATERLOO, WATERLOO, ONTARIO,
CANADA



