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ABSTRACT. We prove the conjugacy separability of groups of the form G =
@1,y by, byt = b = (Ular, ..., a)V(br, ..., )" = 1),
where m > 1.

INTRODUCTION

In the past decade much interest has been shown in so-called 1-relator prod-
ucts of groups, that is (factor) groups of the form 4/N where 4 = A;*Ay*---*
A, is the free product of the groups 4; (1 <i<n) and N is the normal clo-
sure, in A, of a single element of 4. In particular, all 1-relator groups, finitely
generated Fuchsian groups, and triangle groups are of this form. Recently, at-
tempts have been made to extend to 1-relator products the more familiar results,
for example, Magnus’s Freiheitssatz, already known in 1-relator case (see, €.g.,
[1, 3, 4,5, 8, 14]).

In this paper we shall prove, in answer to a question posed by Fine and
Rosenberger in [6], the following

Theorem. Let G = (a;,...,ar, by, ..., bs: af = bjf’ = (UV)™ = 1) where
1<r, 1<s,e=00r>2, fj=00r>2, m>2 (forall i, such that
1<i<r,1<j<s) ' U=Uay,...,a), V=V(b,...,bs). Then G is

conjugacy separable.

Recall that G is conjugacy separable iff to each pair g, g2 € G either g, is
conjugate to g in G (g ~g &) or there exists a finite homomorphic image
G of G in which g, ~z &, . Interest in conjugacy separable groups in gen-
eral stems from the fact that such groups, if finitely generated, have a solvable
conjugacy problem.

The groups of the theorem may be regarded as generalisations of triangle
groups. Triangle groups were proved conjugacy separable by Fine and Rosen-
berger in [6] as a preliminary to their proving the conjugacy separability of all
Fuchsian groups.
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622 R. B.J. T. ALLENBY

THE PROOF OF THE THEOREM

The following proof is quite involved in detail. Accordingly we have split the
proof into several lemmas in an attempt to make it easier to digest.

First note that, since free groups and free products of conjugacy separable
groups are again conjugacy separable [12], we may assume that, between them,
U,V involve all the generators a;, b; .

Next, some observations and a preliminary part of the proof. Let us write

(%) G=(ai,...,ar,a,b,..., b:a} =a’"=bjf’ =1, Ula=V).

Then, provided V' has infinite order, G is the generalised free product of the
free product of cycles 4 =(a;, ..., a,, a: a =a™ = 1) and the free product
of cycles B = (by, ..., b;: b{’ = 1) with the cyclic subgroup (h) = (U~la) =

(V) amalgamated. If V' has finite order and U has infinite order, swap over
the roles of U, V. If U, V both have finite order then U = a;'afay, V =

by 'bf by for suitable elements ag € A, by € B and for suitable generators of
finite order a, € A, b, € B. In this case conjugate 4 and B by ag, by,
respectively, before going further so that G may be assumed to take the form
(@, ...,ar,a,by,...,b:af = b{’ = (agbf)’" =1). Thus G = F x R where
F is a free product of cycles and R = (ay, b;: aj* = b,f’ = (a;jbf)’" =1).

Now F is conjugacy separable and so is R. For: Let K = ¢ /(e , a),
y=af(ex,a), L= fi/(fi, B), 6 = B/(fi, B). Then R is obtained from Ry =
(x,y: xK =yl = (x7p%)™ = 1) by two successive generalised free products (i)
R] = (ak: a;" = 1>*azk/K=xRO and (ll) R2 = -Rl *y=b,fl/L (b[i blﬁ = 1) . By DyCI' [2,

Theorem 4], these will be conjugacy separable if Ry is. But Ry 2 (x, y: xK =
yE = (xy)™ =1) (since (y, K) = (6, L) = 1) and R, is known to be conjugacy
separable by [6, Theorem 1].

Thus, in the main part of the proof given later, we shall assume that 4 (=
U~'a = V) has infinite order. We shall make use of the following lemmas,
some of which look interesting in their own right.

Lemma A. Let G,h be as in (x) and let u be a positive integer.
Then h* ~gh=* iff h ~g h™'.

Proof. If ¢ =h* ~g h™* =d , then [9, p. 212] there exists a sequence A", ...,
h'= of elements of () such that

(**) C=h'u~Ahi'NthNA"'NBhi’:h_‘u:d.

Now, inside 4, B we can only have A* ~ h* or h* ~ h~* since (see Lemma B)
A, B have finite homomorphic images> A4, B in which /# has any prescribed
order. Thus each i; isa u ora —u. Furthermore if, say, h* = b~'h*#b then
h is conjugate to A*! [9, Exercise 9, p. 194] using the same element b. Thus
() implies that 4 ~g h~!.

2Throughout we use A, A, etc., somewhat indiscriminately to denote homomorphic images
of A.
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Lemma B. Let A be the free product of finitely many cycles, and let h be an
element of infinite order in A. Then there exists a finite homomorphic image A

of A in which h has prescribed order A .

Proof. Assume, without loss of generality, that all the generators of A4 are
involved in 4. By [4] we can map 4 onto A C PSL,(C) so that 4 has order
A . But finitely generated subgroups of PSL,(C) are residually finite (see [10]).
Hence there exists a map of A onto a finite group in which /% has order A.

In our main proof we shall apply the two parts of the proof of the following
lemma separately. For tidyness we unite them here into

Lemma C. Let A and h be as above, and let F be a normal free subgroup of
finite index of A contained in the kernel of the natural map from A onto the
direct product of its (finitely many) finite cycles. Let h¥ € F (w > 1) and
suppose that h =4 h=!. Then there exists a finite homomorphic image A of A
in which h #1 and {h*}A 0 (h?) = {h*} # {h~v} 3
Proof. Let S = {a; =1, ay,...,a,} be coset representatives of 4 mod D
where D = FC, C being the centraliser of #” in A. Then each element
of A is of the form yfa where y € C, f € F, a € S. Hence {h¥}4 =
{o; [ fay:ap € S (k # 1), f € FYyu{f~'h?f: f € F}. Now
{f~'h¥f: f e F}n (h®) = {h*}. (This is a singleton since A* ~ A™" is ruled
out by hypothesis if w’ = —w and by order considerations if |w’| # |w]|.)
Similarly, for each k (1 <k <r), {og'fT'h" fay: f € F}n (k) C {h*}.
But if k # 1 then a;lf‘lhwfak =h¥ = far € C C D= o € D, which
is impossible by choice of .S. Hence {a,:‘f“h’”fak: feFInv) =2 (if
k # 1). Consequently {f~'A“f: f € F}n (ah%a;') = @ (if k # 1)—an
empty intersection holding in the free group F. By Dyer [2, Lemmas 8 and
6], there exists a finite (nilpotent) homomorphic image F/X of F in which
{(f~'hv f: feF}n (a,Jz%,;‘) = @ for each and, hence for all, oy # 1. Since
X has finite index in 4, we can assume without loss of generality that, in fact,
X < A. To modify X further so that also {f~'A%f: f € F}n(h*) = {h*} in
A/X , take Y =Ts(F), the sth term of the lower central series of F where s
is such that A% € I';,_; (F)\I';(¥). Suppose that A¥ has order v in A/X.
Let E/Y be a characteristic subgroup of I's_;(¥/Y) (and, hence, of F/Y)
such that the image of A% in F/ Y/E /Y (= F/FE) hasorder v exactly. Note
that E is then characteristic in F and hence normal in 4. Since A/E is
finitely generated and nilpotent by finite it is residually finite and so 4 has a
subgroup Z, say, such that 4/Z is finite and #Z has order vw. Replace

X by XNnZ =U. Then A = A/U satisfies the lemma’s conclusion. For,
=—l_ = = —1 —_ = — — — =
if 7o h fo=hve {(fhv7:7eF)n ) in 4 (with 1 <t < v), then

7o mvTF, = A in A/Z. Since h¥ € Ty_((F), fy h"fy = h* in F/E.
Hence a similar equality holds in F/Z and soin 4/Z .
— =_l= p— — —
Thus (h*)~! =1 in A/Z—a contradiction. Hence f, A% f,=h" in 4.
To prove Lemma E we need the preliminary

3 {a}4 denotes the set of conjugates of a in 4.
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Lemma D. Let (h), (k) be cyclic subgroups of the free group F and let s €
F\(h)(k). Then there exists a finite homomorphic image F of F in which
5e F\(h)(k).

Proof. Suppose [h, k] # 1 in F and suppose §; = heikh: expresses the im-
age of s as an element of (h)(k) C F/T:(F) (= F; say). Suppose [, k] €
T,_((F)\I'\(F). If for i >¢ all the «; are equal, then for some j > we have
Bj # B: (since N2, I';(F) = (1)) . But this implies that k has order |8;— ;| in
F,—a contradiction, since each F; is aperiodic. Thus «, # a; for some r >t
and then 7" “ =k# in F, forsome B >0. B =0 gives a similar contradic-
tion to that just noted. If # > 1 then, since I';_;(F)/T;(F) is centralin F;, we
have [/, k] = [k, k#] =T in F,—contradicting [k, k] # 1 in F;. Thus there
is a finitely generated torsionfree nilpotent homomorphic image F; = N, say,
of F in which 5 ¢ (h)(k). So by Stebe [13] there exists a finite homomorphic
image of F in which 5 ¢ (h)(k). If [h, k] =1 then (h)(k) = (h, k) = ({)
with A =%, k =¢* for some { € F and k, A € Z, and so the desired result
holds in this case since free groups are II. (Stebe [11]). (Recall that a group
G is I, iff, to each cyclic subgroup H and to each g € G\H , there exists a
finite homomorphic image G of G in which g ¢ H.)

LemmaE. Let A and h be as usual, and let s, g € A be such that s ¢ H-H®
where H = (h) and H8 = g7'H g. Then there exists a finite homomorphic
image 4 of A inwhich s ¢ H-H®.
Proof. Let F be the kernel of the natural map from A onto the direct product
of its (finitely many) finite cycles. If s ¢ (A)F factor out (the normal subgroup)
(h)F . Otherwise, Suppose that s € (h)F . Write H = HyUhHyU---Uh*~'Hy
where w is the least positive power of % toliein F, hy = h* ,and Hy = (ho) .
Then HH® = {h*g~'hPg:a, B € Z} = {(h*hS(hIh")¢:0 < u,v < w;
S, T eZ). Thus,if s ¢ HHS then (h~*)s(h™")8 ¢ HoH§ for 0<u,v<w.
If, for any u, v, (h~%)s(h~")8 ¢ F, factor out F.If (h7%)s(h~")8 € F find
a finite homomorphic image of F (as in Lemma D) and then of 4 in which
(h—)5(h=")8 ¢ H-H®. Now take the intersection N, say, of the finitely many
kernels (each of finite index in A) thus arising and set 4 = A/N .

Lemma F. Let A and h be as usual. If u,v are elements of A such that
u = hivh/ then either (i) v='hv = h or (ii) v='hv = b= or (iii) i, j are
uniquely determined.

Proof. If u = hivh/ = h¥vh! then v—'h'~kv = h'=/. Thus we have i — k =
+(I — j) by order considerations. If i = k then / = j. Otherwise, by [9,
Exercise 9, p. 194], we deduce v~ 'hv = h*!.

Note G. In case (iii) we have (v='hv) N (h) = (1). For if v='h®v = hP then
a==f.

Lemma H. Let A, h, and F be as in Lemma E and let h™ be the least power
of h in F. Suppose for all r such that 1 <r <s that u,,v, € A and that
u, = hiru,h)r where the i,, j, are unique. Then there is a finite homomorphic
image A of A in which h has order wp (p some prime) and, if, for 1 <r<s,
Rk Bl is a solution of W, = xU,y, then k, =i, and I, = j, (modp).
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Proof. First note that the uniqueness of the solution of u, = h’v,h/r implies
that for each r, H N H = (1) (see Note G). This, in turn, implies that

= [v; 'A%y, , k%] # 1. For otherwise v, 'A¥v,, h* generate an infinite
cyclic subgroup of F, a contradiction. Note that each W, lies in F, which is
free of rank > 1. If [W, W3] =1 set W] = [W;, z] for suitable z so that
(Wi, Wjl# 1. If [W, Wa] # 1 set W) = W, . Repeat this with W3, Wy, ...
in turn and consider Q = [W], s...» W]l (# 1 in F). Now choose a
finite homomorphic image of F of exponent p. (This is possible since F is
finitely generated residually torsionfree nilpotent and each finitely generated
torsionfree nilpotent group has such a homomorphic image: one may even
choose p arbitrarily large and coprime to |4/F| (see [7]).) Now pass to a
homomorphic image A of A in which Q has order p. Of course none of the
W, is trivial in 4 since Q # 1. But this means that (h%) N (h“’)”' = (1). For
if v,~'h%r, = h*% then v, 'A¥T, = h*" for some n (since [A*|= p), which
contradicts W, # 1. So suppose that, in 4 (an extension of a finite group of
exponent p by a group of (coprime) order |4/F|), we have @, = h*v,ht =
hiw v, 'hPw, = ho | where p, = k, — i,, 0, = j, — I,. Assuming
Dtpr, we have pfa, Consequently . 4?5, = ho* and v, Lhewy, = ppv
(= 1), which together imply 7,~ 'A%, € (h*)—a contradlctlon.

We now return to the proof of the theorem assuming V' to have infinite order
and setting a = UV and h=U"'a="V. Let ¢, d be elements of G (as in
(*)) of minimum length in their conjugacy classes and such that ¢ x5 d. As
usual, let ||x|| denote the (generalised free product) normal form length of x
so that ||x||=0 iff x € (h) and ||x|| =1 iff x € A\(h) or x € B\(h).

Case 1. |c|| = ||d|| = 0. Thus ¢ = h', d = h/ with ¢ »g d. In particular,
i # j. Now, if |i| # |j| we can, by Lemma B, find a generalised free product
G of two finite groups with |A| = |i||j| so that |A’| # |h/| and hence h' =z h/.
So we may suppose that ¢ = 4', d = h~! and that A’ =g h~'. In particular
hi ~ 4 hi , hi ~p ht,

Now A is a finite extension of a finitely generated normal free subgroup F,
say, chosen as in Lemma C. Likewise choose in B a finitely generated normal
free subgroup of finite index, say Fp. Let (h*) = F,NFy. (Note that F,n(h),
. Fgn(h) are not necessarily equal.) By Lemma B there exist normal subgroups

X, Y, of finite index in 4, B and such that X; N (h) = Y; N (k) = (h*). Set
A =F;nNnX,, B =FgnY,. Then A4,, B; are normal of finite index and
hence finitely generated and free in 4, B respectively.

Nowlet ay =1,0,...,a,; B1 =1, B2,...Bs be coset representatives in
A, B, respectively, chosen, as in Lemma C, modulo subgroups D4 = 4,C4 and
Dp = B;Cp where C4, Cp are the centralisers in 4, B of (h*). Use Lemma
C to find normal free subgroups X, Y, of finite 1ndex such that in A/X,,

{@ ' f~'h* fay: fe Ai}n(h*) = 2 and, in B/ Y2, {B, —_lh g/}, g€ BN
(h'*y = & where 1 <k <r, 1</<s. Clearly (using Lemma B) we can modify
X,, Y, to assume, without loss of generality, that X, N (h) = YN (k) (= (h7*),
say). Now choose, as in the proof of Lemma C, normal subgroups E,, Eg of
finite index in A, B such that E, N (h) = Ep N (h) = (h**) and such that

(FhF: F e Ay (%) = (1) # () and (g7Rihg: g € Bi} 0 (i) =
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{hi*y # {h~i*}, respectively, in A/E,, B/Ep. Finally set A3 = E4N X,
By;=EznY,.

The claim is that, in G=4 /A3 ) B/Bj, (a generalised free product of two
finite groups), we have A’ s h=i. For if k' ~G h=i then h# ~g h—i*  and
there exists a sequence of (conjugate) powers of /4 [cf. (*%)]. But, by choice
of Aj, By, the only conjugate of A% in A/A; and B/Bj is hi* itself. This
precludes the possibility that Ai* ~G h=i* and hence hi 5 h=', as required.

Case 2(i). ||c|| = 0, ||/d| = 1. Thus d € B\H. Let ¢ = k. Since d is
assumed of minimal length in its conjugacy class, we have {d}? N (h) = o.
Suppose w 1is such that d%,h” € Fg. Then {d“}® n (h¥) = @ or else
b=1'd“b = h'™_from which b 'db = h' follows. Hence there exists M < B
such that {d“}2n(h*) = in B = B/M . (Apply the proof of the first part of
Lemma C to the equality {y~! /)’1‘1 f~tdv fBy}n(h*) = @ and its consequence

{fravfyn(phepy=2.)

Case2(ii). |lc||=1, ||d|| = 0. Despite the asymmetry ((%) is its own centraliser
in A—it may be a proper subgroup of its centraliser in B) this case can be dealt
with as subcase 2(i).

Case 2(iii). All other cases where ||c|| # ||d|| are dealt with by passing to a
generalised free product G = A4 * @ B of finite groups in which |[¢|| = ||c|| #

||| = ||| . This is easily achieved by using the II. property of the free products
A and B [11] to keep images of elements of A\(k) and B\(k) out of (k).

Case 3. ||c|| = ||d|| = 1 . Here, using the fact that 4, B are Il. and conjugacy
separable, we can ﬁnd a homomorphic image G = A 1 %(n) B of G in which (i)
A, B are finite; (ii) ¢, d ¢ (h);and (iii) ¢~ d in 4 norin B.

Case 4. Here ¢ =g d with ||c||=||d||>2. Let c=wup---u,, d = V102,
where the #; and v; alternate from 4\H and B\H.
Consider the system of equations

-1
Uir1 = Xy V1 X1,

—1
Uip2 = X UaX2,

1()

~1
Uirr = X, VrXp.

A solution of 1(i) is a set hg, Ay, ..., h,_; of elements of (#) that, on sub-
stituting A; for x; (0 <i <r— 1), satisfy the equations I(i) simultaneously.
According to Dyer [2, after Theorem 2], ¢ ~¢ d iff forsomevalue i (0<i<r)
the equations I(i) have a solution. Thus, since ¢ = d, we know that, for no
i, does I(i) have a solution kg, A, ..., h,—;. We show that there is a homo-
morphic image G = 4 x @ B with A, B finite in which, for no i has the

corresponding system of equatlons a solution kg, ky, ..., k,_;. The required
result will then follow from [2, Theorem 4].

Now if for each i (for which all pairs %;,; and v; lie in the same factor 4
or B) there exists some ¢, possibly depending on i, such that u;,, ¢ Hv,H,
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then by Lemma E there is a finite homomorphic image of 4 (or B) in which
Uiy ¢ Hv,H. If X is the intersection of all the corresponding kernels in
A and Y is obtained similarly in B, then X and Y are easily modified to
produce a generalised free product G of finite groups in which ¢ e d.
Consequently we may assume that for at least one value of i the equations
I(i) have no solution in H and yet each individual equation u;.; = xj‘_‘lv i Xj
(1 < j <r) is soluble in H so that a solution of I(i) in some generalised
free product G = A4 @ B of finite groups cannot immediately be ruled out.

We claim that, even here, a generalised free product G = A * @ B of finite

groups, which is a homomorphic image of G, can be found in which ¢ »¢ d.
First suppose for each £k (1 < k < r) that vk“hvk = h (or h~!). Thus
each of the equalities u;,; = h*v;h# may be rewritten u;,; = h*+ov;h=% (or
he+9y;hA+9) . Using such adjustments we can certainly find a9, o, ..., ar € Z
such that

Uip1 = h™ v h*,

Uiyr = h™ M vah®?,
( * %)

Uiy = h™% 10, b,

where o, —ag # 0 since ¢ =g d. We may further modify this solution by
replacing A~ by h~®+% = h=F say, and hence h* by (hf1 =) ha*d if
vithvy = h~!', or by h*1=% if v 'hv, = h. Then replace A~* by the appro-
priate h—%d

Continuing in this way we see that: (I) if in (x**) the number of v; for
which v~ Yhv, = h~! is even, then a, will be changed to B, = a, —J whereas
(IT) if this number is odd then «, is replaced by B, = a, +d. In case (I)
Br—Bo=0,—ag#0. Incase (II) B, — Bo = a, —ag—2J. Since J can be
chosen arbitrarily and since ¢ =g d, we deduce that, in (x %), a, — a9 must
be an odd integer and that Sy, B8, can be chosen so that 8, — By is any odd
integer.

In case (I) consider the maximum, J, of the various differences |, — |
asin (x*x) as i varies over all integers from 0 to r - 1. If we take normal
subgroups M,, Mp of finite index in 4 and B, respectively, such that in
addition to satisfying all the other sufficient conditions imposed, we also have
MyNA=MgnB = (ht) where ¢ > J, then for no i can the equations I(i)
be solved in A/M, * @ B/Mp.

A similar result holds for case (II) if we assume that & is even, which is
possible by [4, Theorem 1]. Thus A% £ T since B, — Bo is odd and 4 has
even order.

Thus we may assume for at least one—and hence for all— i that the equa-

tions u;y; = X ;_,v;yi,; (1 <j<r) have solutions x; j_1 = h; j1, Vi,j =
hi. ; Yet no solution as in I(i) and that for each i at least one of the equations,
say Uik = xi‘}((i)_lvk(i)yi,k(i) , is soluble with unique x,y. For each i se-

lect one such equation, the k(i)th say, as above. Fixing i, consider in turn
the (k(i)+ 1)st, (k(i)+ 2)nd, etc. equations of the system arranging if possible



628

R. B.J. T. ALLENBY

that A; k() = h; ki) etc. (i.e., one tries to match each solution for a y with the

solution for the next x~! as far as possible). Since ¢ =g d this matching must
eventually fail, at the equation u;,,;) = X, }(i)_lvl(i)y,-, 1(iy > say. (This will also
be an equation with unique solution and might be the equation we started with
if we can arrange for y; , = x; o.) We now choose p, as in Lemma H so that
p is larger than all |a; — B;| (as i runs over all integers from 0 to r — 1) and
where A% is the unique solution for x; ;;_; in the above equation and hb:
is the (forced) value taken by y; ;;—; in the preceding equation. This choice
of p leads, as in Lemma H, to a generalised free product G of finite groups in
which € =g d, as required.

10.

1.

12.
13.
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