${\bf Zentralblatt}{-}{\bf MATH}$

© European Mathematical Society, FIZ Karlsruhe & Springer-Verlag Berlin-Heidelberg

Allenby, R.B.J.T.

Polygonal products of polycyclic by finite groups. (English) Bull. Aust. Math. Soc. 54, No.3, 369-372 (1996). [ISSN 0004-9727]

Let \mathcal{P} be a polygon with four edges, A_i $(1 \leq i \leq 4)$ be vertex groups, $A_i \cap A_{i+1} = K_i$ and $K_i \cap K_{i+1}$ is trivial (here all indexes are taken modulo 4). A group G is called cyclic subgroup separable (or π_c) if for each cyclic subgroup H of G and each element $g \in G \setminus H$ there exists a finite homomorphic image \overline{G} of G for which $\overline{g} \notin \overline{H}$. The following main result is established. Theorem C. Let P be a polygonal product of four polycyclic by finite groups A_1 , A_2 , A_3 and A_4 where each amalgamated subgroup $K_i = A_i \cap A_{i+1}$ is normal in each A_i and A_{i+1} (and, for each $i, K_i \cap K_{i+1} = \langle 1 \rangle$, the trivial subgroup). Then Pis π_c .

N.Ya.Medvedev (Barnaul)

AMS subject classification: 20E06;20E26;20F16

Keywords: cyclic subgroup separable groups; finite homomorphic images; polygonal products; polycyclic by finite groups