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ABSTRACT. We examine the abelianization of G. Baumslag and Solitar’s ex-
ample of a one-generator group that is not residually finite. In particular, the
nonfinitely-generated conymutator subgroup is shown to be not residually finite.
We also review a specific example of a cyclic extension of a residually finite
group that is not residually finite.

Theorem 1. If the sequence 1 — N — E — Z — 1 is exact, where N is
finitely generated and residually finite, then E is residually finite.

A proof of this result may be found in Hempel [Hem, Corollary 15.21, p.
180]. More general forms of this result, replacing Z with any residually finite
group and requiring that the sequence split, were proved by Mal’cev [Mal] and
Miller [Mil, Theorem II1.7, p. 29].

I originally conjectured that this result is still true even if we drop the con-
dition that N is finitely generated. The first example in this paper is part of a
proposed counterexample to this conjecture, and the second example is a sim-
ple counterexample which was pointed out to me by Geoff Mess. This second
example also follows from work done by Gruenberg [Gruen].

Consider the example given by G. Baumslag and Solitar [BS] of a one relator
group that is not residually finite: (a, b | a 'bla= b3) . Abelianizing this group
maps b — 1 and yields Z, the free group with a single generator a. We will
refer to the kernel of this abelianization as N . If we define b, = a'ba”' then
N has the following explicit (neither finitely presented nor finitely generated)
presentation:
2_p3

L= I+1>'

N={(..b_ by, b,by,...|b

This group fits into the exact sequence

1— N— BS Group —Z — 1.
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If N is residually finite, this will be an example of a semidirect product of a
residually finite group by Z which is not itself residually finite. We prove that
this is not the case:

Theorem 2. N is not residually finite.

In fact, we show that the only finite quotients of N are cyclic. Thus, if
g €[N, N], then for any finite representation, N——I", we get a(g) =1. We
will need a technical lemma, whose proof we defer until after the proof of the
theorem.

Lemma. Let N—T', where T is a finite group, and let y, = a(b,). Then for all
i, we get that 3 does not divide the order of y, and 2 does not divide the order
of v;.

Proof of Theorem 2. Assume that there is a map N——I" which maps N to a
finite group. From Lemma 1 we learn that for all i the order of y, is some m
where 3 does not divide m and 2 does not divide m . As 3 + m we see that y?
is a generator of (y,) = Z, . Similarly, y,zH is a generatorof (y,, ) =Z, . Thus,
y? = y,.ZH and we see that (y;) = (y,,,). By continuing this process, we see that
N = (y,) = Z,, , the cyclic group of order m . As this group is abelian, the kernel
of the projection of N onto this quotient includes the commutator subgroup
of N. Thus, all finite index normal subgroups of N include the commutator

subgroup, and, in particular, their intersection is not empty. Hence N is not
residually finite.

We now prove the lemma:

Proof of lemma. Recall that y, = a(b,). Let o(I') = 352501, where 3+ M and
2+ M. As oy;) | o), then if o(y,) = 3k'2/'m,. where 3+ m, and 2 { m, , we
find that k <K and /,< L.

Claim. Vi3 to(y,).

Assume the opposite, so for some i, 3k | o(y;) where k; > 0. We now
show that for any j < i, we have kj_l = kj + 1 and hence, by induction,
k, =k +(i—J).

Casel. 2| o(y,)).

= 0(,_) =2-0(3,)/2.

. 347! Al —1 A tlal,—1 3hy+lol =1
This holds as 1 = ) 20m, (yjz)3 1207 m, _ (3’?..1)3/ 207 m, _ VJ—/I bom, , thus
o(7,_) | 3k/+12[/"lmj. However, if o(y,_,) = 3k/“2[/—lmj//z, then we have
3ttt 342 L ..
1= yj_ll B 7, I , which is a contradiction.
Case 1I. 2 ¢ o(yj), SO o(yjz.) = o(yj). However, since 7’,3—1 = yjz, we have
k

o(ri_)) = o(y)) =o(y) =3"m, =o0(y_) =3-0(r_)=3""m,. Again,
this holds for all kj >0.

But & , < K is a finite bound for kj . This contradiction yields that Vi 3 ¢
o(y;), proving the above claim. Similarly, one may show that Vi 2 { o(y,).
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Now, if both 2 t o(y,) and 3 1 o(y,) we have o(y,_,) = o(yf_l) = o(y,z) =

o(y)=m,=0(3)=0(r)=0(},)=0(y,,). Vjo(y)=m, sowemay drop
the subscript i to get V) o(yj) =m,where 3tm, 2+t m.

More generally, Baumslag and Solitar [BS] produced an entire class of one-
relator groups which are not residually finite. The nonzero integers p and ¢
are said to be meshed if either p or g divides the other or if p and g have
precisely the same set of prime divisors.

Theorem 3 (Baumslag-Solitar). Let p and q be nonzero integers. Then
G, ,={a.bla'b'a=b"
is Hopfian if and only if p and q are meshed.

Note that a result of Mal’cev [MKS, p. 415] is that any finitely generated
residually finite group is Hopfian. Thus, for p and g not meshed, Gp, ‘ is not
Hopfian and, as it is finitely generated, G, , is not residually finite. We further
note that if we denote the commutator of G,,by N, , these groups fall into
the exact sequence

l—N, ,—G, , —L®L), ;) — L.
Np’ g has the presentation

N=<"'b—1’bO’bl’bZ""lb,‘]:bp )

1+1

where b, = a'b’”%a”". The following theorem may be proven by a simple
rewrite of the proof of Theorem 2:

Theorem 4. If p and q are mutually prime, then N, , Isnot residually finite.

We can now handle the more general case of p and g not meshed by reducing
it to the case of p and ¢ mutually prime, as shown previously. The method
used to do this was suggested by G. Baumslag.

Theorem 5. If p and q are not meshed then the group N, , is not residually
Sfinite.

Proof. If p and ¢ are mutually prime, then we have the case dealt with in
Theorem 4, so we will assume that gcd(p,q) = r # 1. Define P as p/r
and Q as g/r. Consider the subgroup of N,  generated by {b’ }, which is
isomorphic to N, . As ged(P, Q) =1 we have reduced the problem to that
dealt with in Theorem 4 above, so N, is not residually finite. Any subgroup
of a residually finite group is itself residually finite, so N, is not residually
finite.

The following example of a non-residually finite cyclic extension of a residu-
ally finite group was suggested by Geoff Mess: Consider the wreath product of
the alternating group 4, by Z. This may be considered as an extension:

1l —& AS——»ASZZ—>Z—>1.

1EZ
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We note that while ®,., 4 is obviously residually finite, we can prove that
AUZ is not.

Theorem 6. A, Z is not residually finite.

Proof. We use the notation (4s),,, = t(4s) l.t_l to describe the action of Z on
our wreath product. Assume that there is some homomorphism a: 4A1Z — T,
where I is finite and nontrivial. If we look at the image of the generator of Z
we see that there is some least integer #, such that a(f") = 1. As Ay is simple,
a((4s);) must be either trivial or isomorphic to 45. Now find an integer i
such that the image of A, is nontrivial. (If none exists then the image of «
is cyclic, hence abelian, and we are done.) We get a((4s),,,) = a((4;),). We
note that from our construction of the wreath product that (4s),,, must be in
the centralizer of (4;),, but the center of A is trivial. Thus a((4s),,,) must
be trivial, contradicting our assumption that we could find i such that a((4),)
is not trivial. Thus I" must be cyclic, and the wreath product is not residually
finite (in fact, having only cyclic quotients).

This result is also a consequence of work by Gruenberg [Gruen, Theorem
3.1].

Theorem 7. Let P be any property satisfying the condition that whenever a
group has P, then all its subgroups also have P . If W = G T is residually
P where T is transitive, then either T" is P or G is abelian.
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