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ON THE RESIDUAL FINITENESS OF
GENERALIZED FREE PRODUCTS(Y)

BY
JOAN LANDMAN DYER

In this paper we shall be concerned with the behavior of residually finite
groups under the formation of the generalized free product with one subgroup
amalgamated.

A first result in this direction is due to Gruenberg [3], who proved that the free
product of residually finite (R ) groups is again R% Baumslag began the corre-
sponding investigation of the generalized free product (g.f.p.) [1]. He has estab-
lished, firstly, that the g.f.p. of R# groups is always R# under the proviso that the
amalgamated subgroup be finite (), or, in the notation of that paper:

THEOREM 1 (BAUMSLAG [1]). o(4, B; )<= RZ for A, Be RF [o(A, B) denoting
the set of all g.f.p. of A and B with one amalgamated subgroup, and o(A, B; I') that
subset of o(A, B) in which the amalgamated subgroup satisfies the condition T'].

At this point we impose the fairly reasonable condition that all groups involved
be finitely generated (f.g.). For f.g. abelian groups («7), the g.f.p. is again always
RZ [1]. Moving slowly from the abelian situation, “‘nice” behavior is no longer the
rule, even for groups which are nilpotent of class 2 [1]. Nonetheless, Baumslag
does obtain a pleasant description of the structure of o(4, B) for 4, B f.g. torsion-
free nilpotent, viz.,

THEOREM 2 (BAUMSLAG [1]). If 4, B are f.g. torsion-free nilpotent, then

o(4, By <« ®-RF
and o(A, B; closed in A and B)< RF (where @ is the class of free groups).

It seems reasonable to suppose that the same result obtains without the require-
ment that the groups involved be torsion-free. However, somewhat surprisingly,
we shall show that this is not the case.

THEOREM 3. There exist f.g. nilpotent groups A, B for which o(A, B)¢ @ RZ.
In fact, A~ B, and nilpotent of class 3.

However, we can still obtain a description of the g.f.p. as follows:

THEOREM 4. For A, B f.g. nilpotent,

o(4, B) =€ R¥F-O-RF
and o(A, B; closed) <% - R¥.
Received by the editors March 1, 1966 and, in revised form April 3, 1967.
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132 J. L. DYER [August

It is an open question whether this result can be improved to: ¢(4, B)< R¥ - RZ,
as I suspect.

Continuing in this direction, the next reasonable class to consider appears to be
the polycyclic groups. However, the results above rely on a description of the
manner in which normal subgroups of a f.g. torsion-free nilpotent group intersect
an arbitrary subgroup, and no such information about the structure of polycyclic
groups is known as yet.

In the course of establishing the fact that o(4, B)¢ R# for A, B f.g. torsion-free
nilpotent and nonabelian, Baumslag shows that (4, B) contains a group which
contains a non-Hopf group, and conjectures that o(4, B) itself always contains a
non-Hopf group. We provide additional evidence for this conjecture below; before
stating our result, however, some notation is required. Let

l>M—>A4—>A/M—1

be an extension of M by A/ M. Call A strongly noncentral if there exist me M,ae A
with gp{m, m®} noncyclic (m*=a~'ma). Then

THEOREM 5. o(A, B) contains a non-Hopf group whenever A, B are any split,
strongly noncentral extensions of f.g. torsion-free abelian groups whose centralizers
are of finite index.

For torsion-free nilpotent groups, noncentral extensions are strongly noncentral,
as m™=m’, r, s integral, is possible only if r=s. Thus we have the obvious

COROLLARY 1. o(4, B) contains a non-Hopf group for A, B torsion-free nilpotent
and representable as split noncentral extensions of abelian groups whose centralizers
are of finite index.

An easy application of the construction of Theorem 5 yields also:

COROLLARY 2. o(4, B) contains a non-Hopf group whenever A, B are split exten-
sions of f.g. torsion-free noncyclic abelian groups of rank 1 as A, B modules
respectively.

COROLLARY 3. o(A4, B) contains a non-Hopf group whenever A and B have the form
X Y with X abelian containing an element of infinite order, and Y of order at least 2.

Since Theorem 5 covers groups of abelian-by-finite type, it is pleasantly surprising
that

THEOREM 6. o(A, BYS RF for A, Be Z -/ (Recall. &/ is the class of f.g. abelian
groups).

The proposition which furnishes the key to Theorem 6 may be exploited in
several ways:

THEOREM 7. If A, B &/ -F, then o(A, B)< R¥ if and only if at least one of A, B
is not a strongly noncentral extension of a torsion-free s group.
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THEOREM 8. o(4, B; cyclic)< RZ for A, B polycyclic-by-finite.

This theorem is best-possible in view of Theorem 7 and Higman’s example [4]
of a non-Hopf group constructed as a g.f.p. of two f.g. metabelian groups with
cyclic amalgamation.

It is with much pleasure that I thank my supervisor, Gilbert Baumslag, for his
many suggestions, his kindness and encouragement. I wish also to express my
thanks to the referee for many corrections and improvements, most particularly of
Theorems 5 and 8.

Proof of Theorem 3. Let p be any prime. Define 4 ~ B as follows:

A = gplay, ag, a3, o, d | [a;, a;] = 1, af = ay, a§ = as, a§ = a,a;5°a3,

d? =[d,«] =[da]l=1;i,j=1,2,3},
B = gp{by, by, bs, B, e | [bi, b;] = 1, b = by, b§ = bg, b§ = b,b; °b3,

e =le,Bl=1[eb]=1;ij=123}.
These groups are isomorphic to the direct product of Z, with a split extension of a

free abelian rank 3 group by an infinite cycle, and are nilpotent of class 3.
Define H< A, K< B as:

H = gp{als ag, as, d}a K= gP{b'fe, b2’ bg; e}-

Then HxK~Z xZ xZ x Z,, and we identify them via the isomorphism ¢: H — K
given by

pa, = ble, @al = by, ¢a; = b3, od =e.

Set P={A4 * B; H}, the g.f.p. of 4 and B with H (=K) amalgamated. Then we
claim that

de N{N: N P,PINeF}

which is therefore not free as d is of finite order. To this end, suppose there does
exist N < P with P/N €% and d ¢ N. For each w € P, let |w| denote the order of
wN € P/N; then |w| <o and clearly

VxeP, |w| = |w|, |w?|=|w|/(p,|W].

Thus, e.g. |a;| =|az| =|as|; |b1| =|bs| =|bs].

Now d ¢ N so |d|=p. Let n=|a,|; then n=n, p*, (n,, p)=1. Interpret, for ge Z
[g]=max {0, ¢}; then |a}| =n, p~Y and, using a§=b, and |b,|=|b,|, |b%| =n, p=*~ 2.

Now |b%| = |b3| = |as| =|a:| =n, p* and so we must have had s=0, or, (n, p)=1.
But then |b%e| =np#n=|a,| which is an impossibility. Thus |d|=1, or, de N as
claimed.

Proof of Theorem 4. We require the following rather technical

PRrOPOSITION 1. Let P={A * B; H} and suppose M <l A, N < B with M N H
=N N H. Then



134 J. L. DYER [August

(@) nm{M, N} ~{¥%,r G, | H,,}, the g.f.p. of the groups G,, v €' with amal-
gamated subgroups H,,=G, N G,, where G, is a conjugate in P of M or N and
H,, is a conjugate of a subgroup of H N M=H N N. Furthermore:

(b) There exists a g.f.p. Z e o(M*, N*), where M*, N* are subgroups of the
holomorphs of M, N; and a homomorphism 0:nmi{M, N} —Z such that, if
8:X — K is any homorphism whose restrictions to the factors M*, N* of Z are
injective, then 8 o 0: nm,{M, N} — K is injective on each factor G, of nm,{M, N}.

Let us withhold the proof of this proposition till Theorem 4 has been established.
Let P={A4 = B; H} € o(4, B) with 4, B f.g. nilpotent. Then

TH=1tANH=BNH

(=G denoting the torsion portion of G) and we may apply the proposition above to

nmy{tA, B}. Now 4 is f.g. nilpotent, so 74 is finite and therefore its holomorph is

also finite. But then the g.f.p.  of the proposition is R¥ as Theorem 1 is applicable.

Thus we may map X onto a finite group G via a homomorphism 8, injective on the

factors of . The composed map ¢: nm,{rA4, 7B} — G is therefore injective on the

factors of nm,{7A, 7B} and so Ker ¢ is free [6]. Thus nm,{r4, 1B} € ®-F < RF
Now

Plnm,{rA, B} ~ P* = {A|rA » B|B; H|~H},

but A/rA, B/rB are torsion free and so Theorem 2 yields P* € ®-R¥F; thus
PeRF -O.-RF If Hisclosedin 4, B then 1A=7H=17B so nm,{tA, T1B}=7H e %,
while H/7H is closed in A/rA, B/rB whence P* e R¥ (Theorem 2 again), or,
PeF -RZ

It is perhaps worthwhile to state explicitly the following

COROLLARY. If A, B are f.g. nilpotent,
o(4,B; AU 1B < H) < R¥-R%.
As above,
nmy{tA, 1B} = tHe F

so P e Z-®-RZ, and it suffices to show F - &< RZ

To this end, let G € # - ®. Now any extension by a free group splits, so there is a
free subgroup R=G, of finite index in G. Hence R has finitely many distinct
conjugates, and so the normal subgroup

F=NFR
geq

is again of finite index in G. But F< R, so is free; thus G € ®-F < R

Proof of Proposition 1. In her paper Generalized free products with amalgamated
subgroups, 11 [7] and as applied to g.f.p.’s with one amalgamated subgroup, Hanna
Neumann establishes the fact that every subgroup of a g.f.p. is again a g.f.p.
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With P={4 * B; H} and G=P, a system of generators for G is constructed recur-
sively: for each ordinal o, a set ®,=7, U %, is chosen, where the elements of 7,
generate a factor of G which is a subgroup of a conjugate of 4 or B while the
elements of %, generate factors of some other type. The amalgamated subgroups
are all contained in conjugates of H. To establish (a), we trace Neumann’s con-
struction of the @, to ensure firstly that %, is empty for all ¢, and secondly that the
factor generated by the elements of 7, is a conjugate of M or N. Let

G = nmy{M, N}; P ={A4A%B; H}.

The @, are selected as follows:
Set ®,=G N H. Assume ®,, has been chosen for all ordinals ¢’ <o and let

K, =gpiw:wed,,d < g}
If K,#G, define @, as follows: let
[ = min{l(w) : we G — K,}.

(where I(w) denotes the length of w € P; cf. [6]). If, among the elements of length /in
G — K, there is an element of the form u~tu, t € A U B, u € P (briefly, a transform)
and in normal form as written, choose one such element and, with reference to it,
set

I, ={u"u: t,tin the same factor of P, u~'t'ue G}
and

Sy ={f:feG—gp{Ks, T3, I(f) = I, (f~u'tu) < I}.

If there is no transform of length /in G— K, set 7,= @ and choose any f€ G— K,
of minimal length /. Then define

S ={g:8€G-K,,I(g) =L 1(g7f) = I}

In either case, ®,=7, U &,. We must show

(i) Yo, #=2.

(i) If u=tu € 7, then gp{T,}=u"*Mu or u='Nu if te A or B.

Now (i) is obvious: gp{Z,} is generated by conjugates of elements from 4 or
B—for definiteness assume

gn{7,} < u"tAu, some ueP.
We must verify
u tAun G = u"*Mu.
But this is equivalent to
ANG=M
while
P* = P/G = {A/M x B/N; H HN M}

so A N G—M is empty, or, A " GS M, while apparently M= A4 N G.
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To establish (i), we first note that every element of length <1 in G is a transform
(necessarily with u=1), so if /=1 then J,=4 N G or BN G. In this case fe€ G,
12I(f)=IzI(f~t) implies that fis in the same factor of P as ¢t and so f€ gp{K,, 7,}:
thus %, =g.

Suppose I>1, let ge G—K,, g=§,&,---§ with §,e(4 Y B)—H and &, ¢,
from different factors of P. In the natural map P — P*=P|/G given by w — wG,
we have

1 = gG = (£,G)(£:G)- - - (£,6)

and so ¢;€ MH U NH for some j. By passing to g~! if necessary we may assume
j=({+1)/2. As MHU NH=(M U N)H=H(M U N), we may multiply ¢_; or
£;+1 by an element of H (if necessary) to achieve that £, M U N=G. Put g=né
with
n="¢c i) 6 £ = &hwt,

As ¢ € G, also n € G; since /(n) </, the minimal choice of / implies that n € K. As
g ¢ K,, it follows that ¢ ¢ K, and so /(¢)=1: this can only happen if j=%(+1). In
this case ¢ as written is a transform of length / in G— K, so 7, is not empty; say
uttue I, l(utu)=I1. Now & consists of elements g in G—gp{K,, 7,} which
satisfy /(g 'u~'tu)<l. This last condition visibly implies that u=(¢,---§,_,)7!
and that ¢;, ¢ are in the same factor of P: so every g satisfying the last condition is
in gp{K,, 7,} and therefore 7, is empty.

To establish (b) of our proposition, recall that the holomorph, Hol (X), of a
group K is the set K x Aut (K) with product

(ky, ay)(ke, ag) = (kyoy(ks), ae).

Identify K with K xid and Aut (K) with 1 x Aut (K).
Let B4: A — Aut (M), Bg: B— Aut (N) be defined by conjugation: B,(a)(m)=
m®, Bg(b)(n)=n®, for allae A, me M, b € B, n € N. Define

M* = gp{M, Bs(4)} = Hol (M),  N* = gp{N, Bx(B)} = Hol (V)

and set

H* = {(h,B4(h)) : he HN M, h € H}

= {(h,Bs(h)) : he HN N, k' € H}.
Then H* <Hol (H), H*=< M*, N* and so we may form
X ={M*x N*; H*}.

Define 0,: G,— X as follows: for g,€G,, g,=u"'tu withte MU N, u=a,b, - - - a;by,
a; € A, b;e B, set

0,(g,) = (1, Bebi (1, BaaiV)- - - (1, Baar H(t, D, Baar)- - - (1, Baa)(1, Bsby)
= (1, Baar - - - Baai *Bebi )8, (1, BebiBaay - - -Badr)-
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Now 8, is well defined: a choice appears in the representation of g, as the product
u~'tu of elements coming alternately from A and B, which are only determined
modulo H. However, the amalgamated subgroup H* was designed so as to void
this difficulty. Then 6,: G, — X is clearly monomorphic. It is also clear that

Olew’ = oy'lHy’y,

by choice of H*. Thus we may extend the 8, to an epimorphism 8: nm,{M, N} — =
with 6|, =6,. Since 8(G,) is in a conjugate of M* or N* in X, any map injective on
M* and N* is also injective on 6(G,).

Proof of Theorem 5. Let

l-M—-A4A—->S—1, l-N—->B—>T-—1

be split, strongly noncentral with M, N torsion-free f.g. abelian.

View M as a Z-module, and form the Q-module M*=M ®, Q. Then M
M ®; Z<M* and we shall regard M <M *. The action of 4 on M affords a
representation of the finite group 4/Z (M) as a group of linear transformations
over Z which we view as a representation over Q.

Choose me M, ae€ A so that gp{m, m®} is noncyclic, and let K; be the normal
closure of m in 4. By Maschke’s Theorem, K; ®; Q has a complement, say M’, in
M Q; Q; put Kb=M'nN M. Then K, < 4, K; N K,=1, and [M:K,K,] is finite.
Choose n € N, b € B so that gp{n, n°} is noncyclic and construct subgroups L,, L,
of N similarly. Let p, ¢ be distinct primes with p congruent to 1 mod [M: K, K]
X [N:L;L,). Define H< A, J< B as follows:

H = gpim, m®},  J = gp{n®, n"%}.
Then H~J with isomorphism given by
m—n?,  m®—n".
Identify H with J accordingly and form
P ={4xB; H(=J)}.
Then P is the required non-Hopf group: we establish this by exhibiting an

epimorphism 6: P — P with nontrivial kernel.
To this end, define : K; K, — K; K, by

‘/’|K1(k) = kps ¢|K2 = idKz‘

We claim ¢ has a (unique) extension : M — M. Choose a basis x,, . .., x, for M
such that x$1, ..., x% form a basis for K; and x4 !w; 1, . . ., xi'w, form a basis for
K, where w;=w,(xy, ..., x;). For each i, j+1=<i</, there exists v;=v;(xy, ..., X;)
such that w}~P=uf, for ¢; | [M:K;K,] and p=1mod [M:K,K,][N:L,L;). Define
J: M — M by setting
!p(xi) = X?, i= 19---9.].,
=xv, i=j+1,...,1
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and extending linearly. One verifies easily that |, x,=%. Now ¢: K; K, — K, K,
is compatible with the action of S as K, K, are normal subgroups of 4 and (k%)®
=(k?)* for all ae 4, k€ K,. But this implies that ¢ is also S-compatible as
[M:K,K,;]<oo and M is torsion-free. Thus the splitting of the extension A allows
us to assert the existence of a homomorphism 6,: 4 — A rendering the diagram

1 M 4 s 1
l(p lo,, lids
1 M A s 1

commutative. Construct 6;: B — B similarly. It is clear that 84|y = 05|y and so we
may simultaneously extend them to an endomorphism 6: P — P.

Firstly, 6 is an epimorphism; we need only verify that M, N<Im 6 as 6 acts as
the identity elsewhere. Now m € Im 8 for m=n?=0(n). Furthermore (p,q)=1 so
there exist u, veZ with pu+quv=1. Thus n=0(n)*n®"* *=0mM**"* and m,
a€Im 6 so nelIm 0 as well. Thus K; =nm {m}, L, =nmg{n} <Im 6. But |7(M/K,)|,
|7(N/L,)| are prime to p, and 6 acts as the identity on M/K; modulo +(M/K,),
N/L, modulo 7(N/L,).

Let w=[n, ab~']’n?~% Then we Ker § but w#1 since n, n»~2€ B—H and
ac A—H.

Proof of Theorem 6. In all of the following, the aim is always to reduce the
problem to the case in which the amalgamated subgroup is finite and Baumslag’s
Theorem 1 is applicable. Formally, the situation we shall obtain is that described
by the hypotheses of the following proposition, essentially due to Baumslag [1]:

PROPOSITION 2. Let P={A * B; H} and assume there exist equally-indexed
Samilies {Ap}nez*s {Bunezt of nested normal subgroups of A, B (i.e. filtrations of
A, B) satisfying

(i) VneZ*, Hn A,=H N B,,

(ii) VneZ*, HHHN A, € %; A/A,, B/|B, € R#,

(111) mnez+ Ap=1= rWnGZ+ B,,

(V) NMnez* HAp=H=\pez* HB,.

Then P € R#.

Now (i) establishes the existence of epimorphisms
0,: P— P, = {A/A, * B|B,; HHN A, = H/HN B}

extending the canonical projections 4 — A/A,, B— B/B, and P, € R¥ by (ii)
and Theorem 1. But any w € P is a finite product of elements coming alternately
from A and B, each of which may be excluded from Ker 6, for some » by (iii).
Moreover, we can ensure that /p(w) =1/, (0,w) for n sufficiently large, as the image
of any element of A— H or B— H lies in A/A,— HA,/A, or B/B,— HB,|B, for n
large enough by (iv). Thus P € R(RF )= R%.
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Let P={4 * B;H}eo(4, B) and let K<l A4, L < B be finite with 4/K, B/L
torsion-free abelian. Now HK, HL <] A, B respectively. Since HK, HL € R¥ there
exists an integer r for which

(HKY NK =1 = (HLy N L.

Since K= [A, A], L=[B, B]; (HK)", (HL)" are central. Now (HK)"'2 H', (HLY 2 H"
hence H™ <] A, B. Thus {H™"},.,+ forms a filtration of both A4 and B of the required
type: conditions (i), (ii) and (iv) are immediate, while (iii) follows from the fact
that no #1 element in any f.g. torsion-free abelian group is of infinite height.

Proof of Theorem 7. Suppose that 4 € &7 - % is not a strongly noncentral extension
of a torsion-free abelian group. Then there exists M <] A with M e/, A/M € F
and gp{m, m*} cyclic for every me M, ac A. We may replace M by M'*™! to
ensure that M is torsion-free. Note that, for m € M and root-free, m*=m*!; so
this is the case for any element of a basis for M.

Now for any subgroup N of M there is a basis m, . .., mg of M so that N has
basis mé:, ..., mi¥, &,=0 and integral. Since the m; are root free, for all ae 4 we
have

(mi)® = mis,
thus N®=N as N is a subgroup; i.e. any subgroup of M is normal in A4.
Now let A, Be &/-% and H= B, A with 4 not strongly noncentral. Let N </ B
with N € &/, B/N € Z. There exists an integer r for which A"< M, B'< N and 4’,

B’ are torsion-free. Let t=|7(B'/H")|, and, for any integer s> 1 define, for each
neZ*

B,=B"%, A,=HNB,.
Then B™ N H=< H" by choice of ¢, for
HNnB*< H NB £ H"
Hence 4,< H"< A"< M, by choice of r; so 4, < A. Now observe that
N Bo=1= (\ 4,, HNA,=HNB, HHNB,cF

nez+ nez +
Furthermore &/ -% < R# and the class of &/-% groups is image-closed, so
A|A,, B|B, € RZ.
Since A, < H, apparently
N HA,=H

nez+

and we may apply Proposition 2 once we verify

(N HB, = H;

nez+

we must show (,ez+ HB, < H for the reverse inclusion is automatic. Now H N B"
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is a direct factor of B™ as B"/H N B™ is torsion-free (our selection of ¢) and B™ is
a torsion-free &/ group. Thus H N B™ is complemented by a subgroup K= B™:

B = (H N B™%K; KnHNBt=1

whence, for all neZ*, HB®™"'=HK" and KN H=1 as K=B". Suppose
b € Nnez+ HB,; i.e. be HK® for all Ne Z*. Thus

b=nhkS, h,eHk,cKk.
But K\ H=1 so h,=h, for all n, whence
hi'b = k3" e K.

Since K is f.g. torsion-free abelian, (,cz+ K*"=1 or b=h, € H as required.

To prove the remaining part of Theorem 7, let 4 € &7 - % be a strongly noncentral
extension of a torsion-free &7-group. Thus there exists m € 4 whose normal closure
is a torsion-free .27-group of rank at least two. Choose a € 4 such that gp{m, m®}
is noncyclic. There is a least integer K>0 with [a%, m]=1. Set C=gp{a, m} < A.
For B e.«Z-% any other strongly noncentral extension of a torsion-free &/ group,
form D=gp{b, n} similarly. To show ¢(C, D)d¢ RZ is sufficient as every element of
o(C, D) is a subgroup of some element of o(A4, B). In fact, ¢(C, D) contains a
non-Hopf group, and this is the content of the following proposition.

PRroOPOSITION 3. Let C, D € &/ -F, with
l-M—-C—-S—1, l1-N—-D—->T—1

such that M, N are noncyclic torsion-free oZ-groups, S, T are cyclic, M and N are one
generator S and T modules respectively and [S¥, M]=[T*, N]=1 for some positive
integers K, L. Then o(C, D) contains a non-Hopf group.

Let me M, ne N be elements whose normal closures in C, D generate M, N.
Choose c € C, d € D such that cM, dN generate S, T (regarding S=C/M, T= D|N).
Assuming K, L integers such that [S¥, M]=[T% N]=1, c¥e M or gp{c} " M=1
and d¥ e N or gp{d} N N=1, choose p to be any prime of the form

14+ KLr, reZ-".

(As is well known, there are infinitely many such for the numbers 1+ KLn, ne Z *
form an arithmetic sequence with (1, KL)=1.) Let ¢> 1 be any number prime to p.
Then
H = {m’ mc)’ H* = {np, nqd}
are free abelian of rank 2 and may be identified via the isomorphism ¢: H — H *
given by
om = n? om°® = n,

Set P={C* D; H(=H*)}eo(C, D) and we claim P is non-Hopf; this is
established, as before, by exhibiting an ependomorphism of P with nontrivial
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kernel: Suppose ¢¥ € M. Then each element of C may be written in the form

ctu, 0Ze< K, peM.
Define 0: C — C by
0(ctn) = cPep?.
If ¥ ¢ M, gp{c} N M=1 and every element of C may be written uniquely in the
form
cfu, e€Zt,peM.
Then define
0(cn) = cp®.
In either case 6 is a well-defined homomorphism.

With p: D — D defined similarly, it is clear that p and 8 agree on H and so may
simultaneously be extended to an endomorphism ¢: P — P. Now (p, K)=1 so
weM N Imy. But therefore M<Imy¢ as m=y(n) while M=gp{m® : e Z*}.
Furthermore

¢ = cPc™ELr

so in the situation ¢ € M, we have )(c)=c? whence ¢ € Im ¢; while if ¢¥ ¢ M then
c=y(c), therefore C<Im . Similarly, D<Im ¢ provided » € Im ¢; but (g, p)=1
so there exist u, v € Z* with qu+pv=1. Thus

n = plte — z/;(n)”(n‘”)"d'l — {/l(n)vmcud'l‘

Now m,celmy, m“*e NnNnImy and therefore (m)¢ 'eImip. Thus also
D<Imy and ¢ is an epimorphism. However, with w=[n, cd ~*]Pn*~? we find
weKer iy, w#1 as n, n® € D— H while ce C—H.

Proof of Theorem 8. Let us observe that, for A any polycyclic-by-finite group,
there exists a sequence of integers {r,},ez+ With

rnlrn+la ﬂ A =1
nez+

whence also
n AT”S” = 1

nez+

for any sequence {s,},z+ of integers. This may be established directly or by an
easy application of a result of Learner [5], where it is in fact shown that we may
choose r,=k" for some ke Z*.

Let P={A4 * B; H} € o(A4, B; cyclic). Utilizing Theorem 1 as usual, we may
assume that H is infinite: H=gp{x}. As A, B are polycyclic-by-finite, choose series

A=A1>A2D"'DAKD13 B=B1[>Bz[>"'[>BL[>1

with 4; <| 4, B; </ Bfor 1 2i<K, 1 <j<L, whose factors are either finite or torsion-
free «Z. Choose i, j minimal for which

HﬁAi+1= 1 =H('\B,-+1.
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Then HN 4;#1#H N B,, or
HnA; =gp{x}, HNB; =gp{x7}, rs>0;
and 4,/4;.,, B;/B;,, are infinite, hence torsion-free 7. Thus there exist maximal
integers u, v with
XA 41 € (Aif Ai 4 1)Y, X"B; 11 € (By/B; 4 1)
that is,
HnN A4, = gp{x™} = HN BYB;, ;.
Now gp{x"4; ..} is a direct factor of (4;/4;,,)* so that
X441 € (Ai/A; )™ if and only if p|z.
As
(AifAdiv ) = (A¥A; 1) A1/ Ai sy
and the situation is symmetric, this means that
H O (Af4is1)Aiv1 = gp{x™} = H N (BB, 1)’ B i1
for every p in Z*. On account of x™ € A¥4;,, N BYB;,,, in fact
H O (AP A; 1) = gp{x™} = H N (B}B; 1)
Since A4, 1, B}B;., are polycyclic-by-finite, there exists a sequence {p,}nez+ Of
positive integers, with p,|p,,, for all #, such that
N (i) =1 = . (BiBjs1)n.

nezZ+ nezZ+

Set
C, = (A;lAi-)-l)D", D, = (B})Bjn)p"-

Then {C}rez+, {Dyp}nez+ form nested filtrations of 4, B; the proof will be completed
by showing that these satisfy the hypotheses of Proposition 2. The nontrivial part
is to check that, e.g.,

N C.,H = H.

. nez+
From above, HN C,A4;,,=gp{x™»}=H N C,. Since HA}A,.,/A*4,,, is finite,
there exists to each g in (N,ez+ C,H an element 4 in H such that

hge (N CuH N AfA;s).
nezZ+

As in a step of the proof of Theorem 7, it can be deduced that
N Co(H N A¥Ai ) Aiv1/Arr = (HO AP A ) Aiv1/Aier,

nez+t
that is,
N Cu(HN A¥A; DAy = (H O Af A1) Aiy1;

nez+
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thus hg e (H N A¥A;,1)A;,,. This proves that (,cz+ C,H=< HA;,,. Obviously,
HZ(Nnez+ C,H; it remains to establish that (N,cz+ C,H N A4;,;=1. This cer-
tainly holds if, for all » in Z*, C,H N A;,,; < C,. In fact, more is true; namely,
C,HnN C,A;.,=C,. The converse inclusion being obvious, this last statement
follows from the fact that the indices of C;H N C,A4;,, and C, in C,H are equal and
finite. Indeed, as H N C,=H N C,A;,,=gp{x""n},

C,HIC,HN CoA;yy = CoHA 4 1/Chdiyy = HIHN Cod;yy
= HHN C, ~ C,H|C,

shows that each index is rsp,. This completes the proof of Theorem 8.
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