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Abstract

It is shown that every ascending HNN extension of a finitely generated free group is Hopfian. An
important ingredient in the proof is that under certain hypotheses on the group H , if G is an ascending
HNN extension of H , then cd(G) = cd(H) + 1.

1. Statement of results

A group G is Hopfian, provided that every surjective endomorphism of G is
an automorphism. This notion originated in connection with Hopf’s question of
whether a degree 1 map from a closed manifold to itself must be a homotopy
equivalence. While it is easy to give examples of infinitely generated groups which
are not Hopfian, for some time it was an open question as to whether every finitely
generated group is indeed Hopfian. The first finitely generated example was given by
B. Neumann in [13], and shortly thereafter the following finitely presented example
was given by G. Higman in [8]:

〈a, s, t | at = a2, as = a2〉,
where xy denotes y−1xy. Another famous non-Hopfian example was given by Baum-
slag and Solitar [2]:

〈b, s | (b2)
s

= b3〉.
The issue of which groups are Hopfian has received consistent attention over the
last fifty years. One of the reasons for this is a surprising connection with residual
finiteness. A group G is residually finite provided that {1G} is the intersection of the
finite index subgroups of G. It was proved by Malćev that if G is finitely generated
and residually finite, then G is Hopfian [11].

Let φ : H → H be an injective endomorphism. The ascending HNN extension
(or mapping torus) determined by φ is the group H∗φ presented by 〈H, t | ht =
φ(h), ∀h ∈ H〉. Using this terminology, our main theorem is stated as follows, and
proved, in Section 3.

Theorem 3.3. Every ascending HNN extension of a finitely generated free group
is Hopfian.
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The special case of Theorem 3.3 when φ is an isomorphism was previously
known. In that case, H∗φ is isomorphic to a semidirect product HoφZ, and is easily
seen to be residually finite (and thus Hopfian) by Malćev’s result. Theorem 3.3 adds
some credence to the following conjecture.

Conjecture 1.1 (Residually finite groups conjecture). Let G be an ascending
HNN extension of a finitely generated free group. Then G is residually finite.

We note that this conjecture is proved for certain subclasses in [14], and in [20].

As observed by D. Meier [12], the above non-Hopfian examples are readily
generalized to certain multiple ascending HNN extensions, as well as to certain
HNN extensions which are not ascending. For instance, if φ : F → F is a proper
monomorphism of the group F , then the group

G = 〈F, s, t | fs = φ(f), ft = φ(f), ∀f ∈ F〉
is not Hopfian. Indeed, the endomorphism of G induced by f 7→ φ(f), s 7→ s, t 7→ t

is surjective because sfs−1 7→ sφ(f)s−1 = f. However, this endomorphism is not
injective because if x 6∈ φ(F), then sxs−1tx−1t−1 6= 1G by the normal form theorem for
HNN extensions [10, Theorem IV.2.1], but sxs−1tx−1t−1 7→ sφ(x)s−1tφ(x)−1t−1 = 1G.

These examples demonstrate that while Theorem 3.3 holds for a single ascending
HNN extension of a finitely generated free group, a double ascending HNN exten-
sion can fail to be Hopfian. We note, however, that a semidirect product Fn o Fm
of two finitely generated free groups is easily seen to be residually finite, and thus
Hopfian, as before.

In pursuit of the Hopf property, it is certainly helpful to assume that the HNN
extension is ascending; this is not enough, however, and some restrictions on the base
group are also necessary. Indeed, two examples are given in [15] of ascending HNN
extensions of finitely generated residually finite groups which are not residually
finite. One of these examples has very few finite quotients. The other example is
actually not Hopfian.

Finitely generated free groups are Hopfian, and this plays a definite role in
the proof of Theorem 3.3. This was first proved by Nielsen in 1929, using Nielsen
transformations [10, I.3.5]. Note that since free groups are residually finite, one can
also deduce this from Malćev’s result.

Recently, Sela proved the remarkable result that torsion-free word-hyperbolic
groups are Hopfian [17]. Note that it is still unknown whether every word-hyperbolic
group is residually finite. There are numerous examples of ascending HNN extensions
which are not word-hyperbolic. For instance, any such group containing BS(1, n) =
〈a, t | at = an〉 as a subgroup cannot be word-hyperbolic. In fact, it is still an open
question as to whether an ascending HNN extension of a finitely generated free
group is word-hyperbolic if and only if it does not contain BS(1, n) as a subgroup.
(See [9] for some recent progress on this problem.) While Theorem 3.3 cannot be
deduced from Sela’s result, one might hope for the following attractive common
generalization.

Conjecture 1.2 (Word-hyperbolic groups conjecture). Let G be an ascending
HNN extension of a word hyperbolic group H; then G is Hopfian.
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Because one-ended word-hyperbolic groups do not admit proper monomor-
phisms into themselves [16], the most important case to consider in Conjecture 1.2
is the case when G is a semidirect product G = H oZ.

There are two possible direct generalizations of Theorem 3.3.

Conjecture 1.3 (Iterated ascending HNN extensions conjecture). Let G1, . . . ,Gn
be groups such that G1 is a finitely generated free group, and each Gk+1 is an ascending
HNN extension of Gk . Then Gn is Hopfian.

Conjecture 1.4. Let G be an ascending HNN extension of a free group of infinite
rank. If G is finitely generated, then G is Hopfian.

We note that Conjecture 1.4 is known to be true in the special case where G is
a free by cyclic group which is finitely generated. Indeed, Baumslag showed [1] that
such groups are residually finite.

A crucial ingredient in the proof of Theorem 3.3 is the following theorem, stated
and proved in Section 2.

Theorem 2.6. Suppose that F is a finitely generated free group, that φ : F → F

is a monomorphism, and that G = F∗φ. Assume that G is isomorphic to H∗τ, where H
is of type FP2 and τ : H → H is a monomorphism. Then H is free.

In particular, Theorem 2.6 holds when H is finitely presented, or even finitely
generated, by Remark 2.7.

Theorem 2.6 is the case n = 2 of Theorem 2.1, which we will state at the start of
the next section, after recalling various homological definitions. A group G is of type
FPn if the trivial ZG-module Z has a projective resolution which is finitely generated
in dimensions less than or equal to n. The cohomological dimension of G, denoted
by cd(G), is defined by cd(G) 6 n if and only if there is a projective resolution of
Z which vanishes above dimension n. General references for this subject are [5] and
[4]. Some facts worth recalling are as follows.

(i) cd(G) = 1 if and only if G is free [18, 19].

(ii) A group of type FP1 is finitely generated, and vice versa; a finitely presented
group is of type FP2.

(iii) A group G is defined to be of type FP if and only if there is a finitely
generated projective resolution of Z. It is a fact that G is of type FP if and
only if, for some n, G is of type FPn and cd(G) 6 n; see [5, VIII.6.1].

(iv) If H ⊂ G, then cd(H) 6 cd(G); see [5, Proposition 8.2.4].

(v) If G is of type FPn, then for k 6 n, Hk(G,−) commutes with direct limits
(see [4, 2.4] or [5, VIII.4.6]). In particular, for k 6 n, we have Hk(G,⊕iMi) ∼=
⊕iHk(G,Mi).

(vi) If G is an HNN extension with base group H , then cd(G) 6 cd(H) + 1; see
[4, Proposition 6.12].

Theorem 2.1 below partially generalizes Bieri’s result [4] that if H is of type FP
and if G = H oZ, then cd(G) = cd(H) + 1.
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2. Proof of ascending dimension

Theorem 2.1. Let H be a group of type FPn, where 0 6 n < ∞. Suppose that
cd(H) = n and Hn−1(H,ZH) = 0. Then if τ : H → H is a monomorphism, then
cd(H∗τ) = n+ 1.

Remark 2.2. Note that the hypotheses of the theorem are satisfied when H is
an n-dimensional orientable Poincaré-duality group.

Proof of Theorem 2.1. Let G = H∗τ. If n = 0, then H−1(H,ZH) is undefined,
but the conclusion of the theorem is obvious because H = {1} and G ∼= Z. For the
remainder of the proof, we assume that n > 1.

Since cd(H) = n and G is an HNN extension of H , Fact (vi) implies that
cd(G) 6 n+1. Since G ⊃ H , Fact (iv) implies that cd(G) > cd(H) = n. Consequently,
cd(G) is either n or n+ 1.

By [5, Proposition 8.2.3], if cd(G) = n, then Hn(G,ZG) 6= 0. We will show below
that Hn(G,ZG) = 0, and we can therefore conclude that cd(G) = n+ 1.

The Mayer–Vietoris sequence [4, Theorem 2.12] for the ascending HNN extension
G = H∗τ gives

Hn−1(H,ZG)→ Hn(G,ZG)→ Hn(H,ZG)
α→Hn(H,ZG).

Since H is of type FPn, [6, Theorem 0.1] implies that α is a monomorphism. Since
H is of type FPn−1, by Fact (v) we have Hn−1(H,ZG) ∼= ⊕G/HHn−1(H,ZH) = 0.
By combining the facts that α is a monomorphism and that Hn−1(H,ZG) = 0, we
deduce that Hn(G,ZG) = 0, as claimed.

Remark 2.3. Theorem 2.1 holds if we replace the requirement that G be an
ascending HNN extension with the following, less restrictive, requirement: G is an
HNN extension with base group H and with edge group E, such that at least one of
the monomorphisms of E to H induces a monomorphism H∗(H,ZH)→ H∗(E,ZH).
This holds, for instance, when the image of one of the monomorphisms has finite
index in H .

Lemma 2.4. Let H be finitely generated and torsion-free, but not free, and con-
sider an ascending HNN extension H∗τ of H . Then there is a subgroup K∗σ of H∗τ,
such that K is a one-ended free factor of H .

Proof. Since H is torsion-free and finitely generated, [18] and [3] give a decom-
position H = F ∗ A1 ∗ . . . ∗ Am, where each Ai is finitely generated and one-ended,
and F is finitely generated and free. Furthermore, m > 1 because H is not free.

As Ai is one-ended for each i, the Kuroš subgroup theorem [10, Theorem IV.1.10]
implies that τ(Ai) is a subgroup of hAjh

−1 for some j and some h ∈ H . Hence there

exists n > 0 such that τn(Ai) ⊂ ĥAiĥ−1 for some i and some ĥ ∈ H .
Let H∗τ be presented by 〈H, s | s−1hs = τ(h), ∀h ∈ H〉. Define σ : Ai → Ai by

σ(a) = ĥ−1τn(a)ĥ. Consider the HNN extension Ai∗σ presented by 〈u, Ai | u−1au =
σ(a), ∀a ∈ A〉. We will show that there is a monomorphism f : Ai∗σ → H∗τ, extending

the inclusion of Ai into H . Define f(u) = snĥ and f(a) = a for all a ∈ Ai. Now
f(u−1)f(a)f(u) = ĥ−1s−nasnĥ = ĥ−1τn(a)ĥ = σ(a) = f(σ(a)). Hence f extends to a
homomorphism f : Ai∗σ → H∗τ. Any element g ∈ Ai∗σ has the form g = ujau−k
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for j, k > 0 and a ∈ Ai. If g ∈ ker(f), then clearly j = k, but then a ∈ ker(f). As
f(a) = a, a = 1 and we see that f is a monomorphism. The result follows with
K = Ai.

By applying Lemma 2.4, we can obtain the following strengthening of the case
n = 2 of Theorem 2.1.

Corollary 2.5. Let H be of type FP2, and suppose that cd(H) = 2. Let
τ : H → H be a monomorphism, and let G denote H∗τ. Then cd(G) = 3.

Proof. Since cd(H) = 2, we see that H is not free, and so by Lemma 2.4, there
is a monomorphism E ↪→ G, where E = K∗σ and K is a one-ended free factor of
H = K ∗ L.

The group K is also of type FP2, by [4, Proposition 2.13(a)]. To see that
cd(K) = 2, first observe that cd(K) > 2 because K is one-ended, and hence is not
free. Second, observe that Fact (iv) implies that cd(K) 6 cd(H) = 2.

By Theorem 2.1 we see that cd(E) = 3. Since G ⊃ E, Fact (iv) implies that
cd(G) > 3. Since cd(H) = 2 and G is an HNN extension of H , Fact (vi) implies that
cd(G) 6 3. Consequently, cd(G) = 3.

Theorem 2.6. Suppose that F is a finitely generated free group, that φ : F → F

is a monomorphism, and that G = F∗φ. Assume that G is isomorphic to H∗τ, where H
is of type FP2 and τ : H → H is a monomorphism. Then H is free.

Proof. Suppose that H is not free. Then cd(H) > 2. But H 6 G and cd(G) 6 2.
Thus cd(H) = 2. As H is a subgroup of F∗φ, it is torsion-free. By Corollary 2.5,
cd(G) = 3, which is a contradiction.

Remark 2.7. A group G is said to be coherent, provided that every finitely
generated subgroup of G is finitely presented. Feighn and Handel proved that
ascending HNN extensions of free groups are coherent [7]. Consequently, it is
sufficient to assume in the statement of Theorem 2.6 that H is finitely generated.

3. Proof of the Hopf property

The following lemma characterizes ascending HNN extensions.

Lemma 3.1. Let H be a subgroup of G, and let t ∈ G. Suppose that

(1) t−1Ht ⊆ H;
(2) G = 〈H, t〉;
(3) tn 6∈ H for any n 6= 0.

If φ is the endomorphism of H induced by conjugating by t, then G is isomorphic to
the ascending HNN extension H∗φ presented by 〈H, s | s−1hs = φ(h), ∀h ∈ H〉.

Proof. There is a natural homomorphism from H∗φ onto G, which is induced
by the identity map on H and the map s 7→ t. Every element of G can be represented
in the form smws−n, where m, n > 0 and w ∈ H . We need to show that our
homomorphism has trivial kernel.
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Suppose that a = smws−n is in the kernel (here, w ∈ H). This means that
tmwt−n = 1G, and so w = tn−m. By Condition (3), m = n, and w = 1. But then a = 1G,
and so the kernel is trivial, as required.

Lemma 3.2. Let G = H∗φ be an ascending HNN extension.

(1) If G has finitely generated abelianization and ρ is a surjective endomorphism
of G, then G = ρ(H)∗γ for some endomorphism γ of ρ(H).

(2) Moreover, if ρ is injective on H , then ρ is an isomorphism.

Proof. Let t be the stable letter of H∗φ. Conjugation by ρ(t) induces an
endomorphism γ of ρ(H), and we form the ascending HNN extension ρ(H)∗γ .
Observe that ρ factors as H∗φ → ρ(H)∗γ → G. The first map is clearly surjective
and an isomorphism when ρ is an injection on H . We will apply Lemma 3.1 to see
that the second map is an isomorphism.

It is clear that ρ(t)−1ρ(H)ρ(t) ⊆ ρ(H) and G = ρ(G) = 〈ρ(H), ρ(t)〉. So, in order
to apply Lemma 3.1, we must show that ρ(t)n 6∈ ρ(H) for any n 6= 0.

Let Gab denote the abelianization G/[G,G] of G, and let µ : G→ Gab denote the
abelianization map. Because the quotient of G by the normal closure of H is infinite
cyclic, µ(H) is of infinite index in Gab.

Finitely generated abelian groups are Hopfian, and so the surjective endomor-
phism ρ : G→ G projects to an isomorphism ρab : Gab → Gab.

Arguing by contradiction, suppose that ρ(t)n = ρ(w) for some n 6= 0 and w ∈ H .
Then µ(ρ(H)) is of finite index in Gab. But then the isomorphism ρab takes the
infinite index subgroup µ(H) to the finite index subgroup ρab(µ(H)) = µ(ρ(H)).

Theorem 3.3. Every ascending HNN extension of a finitely generated free group
is Hopfian.

Proof. Consider an ascending HNN extension G = F∗φ of a finitely generated
free group F . Let t be the stable letter of this extension. We can assume that rank(F) is
minimal, in the sense that G cannot be represented as an ascending HNN extension
of a free group of smaller rank. Let ρ : G → G be a surjective endomorphism.
By Lemma 3.2(1), G = ρ(F)∗γ for some endomorphism γ. By Theorem 2.6 and
Remark 2.7, ρ(F) is free. Since rank(F) is minimal, the rank of ρ(F) must equal
rank(F), and so the restriction of ρ to F is an injection (because finitely generated
free groups are Hopfian [10]). The theorem now follows from Lemma 3.2(2).

Remark 3.4. In the proof of Theorem 3.3, we represent G as an ascending
HNN extension of a free group F which is of minimal rank. We note that the
minimal number of generators for G may actually be smaller than rank(F) + 1. For
example, consider the ascending HNN extension

G = 〈a1, . . . , ar, t | ati = ai+1 (subscripts mod r) 〉.
Then G is generated by a1 and t, but G cannot be expressed as an ascending HNN
extension of a free group of rank 1. Indeed, the groups BS(1, n) = 〈a, t | at = an〉 are
solvable, and hence do not contain a free subgroup of rank > 2.
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