On the Profinite Topology on Negatively Curved Groups

Rita Gitik*

MSRI, 1000 Centennial Drive, Berkeley, California 94720
E-mail: ritagtk@math.lsa.umich.edu

Communicated by Efim Zelmanov
Received January 20, 1997

Let H and K be quasiconvex subgroups of a negatively curved locally extended residually finite (LERF) group G. It is shown that if H is malnormal in G, then the double coset KH is closed in the profinite topology of G. In particular, this is true if G is the fundamental group of an atoroidal LERF hyperbolic 3-manifold, and H is the fundamental group of a totally geodesic boundary component of such manifold.

INTRODUCTION

The profinite topology on a group G is defined by proclaiming all finite index subgroups of G to be the base open neighborhoods of the identity in G. We denote it by $PT(G)$. A group G is residually finite (RF) if the trivial subgroup is closed in $PT(G)$ and a group G is locally extended residually finite (LERF) if any finitely generated subgroup of G is closed in $PT(G)$.

E. Rips and the author showed in [G-R] that for any finitely generated subgroups H and K of a free group F the double coset KH is closed in $PT(F)$. G. A. Niblo generalised that result in [Niblo] showing that finitely generated Fuchsian groups have this property.

In this paper we prove the following:

Theorem 1. Let H and K be quasiconvex subgroups of a negatively curved LERF group G. If H is malnormal in G then the double coset KH is closed in the profinite topology on G.

* Research partially supported by Institut Henry Poincaré and by NSF grant DMS 9022140 at MSRI. Current address: A and H Consultants, Ann Arbor, MI.
Recall that a subgroup H is malnormal in G if for any $g \notin H$ the intersection of H and gHg^{-1} is trivial, and a group G is locally quasiconvex if all finitely generated subgroups of G are quasiconvex in G.

Remarks. (1) Let G_1 be a finite index subgroup of a negatively curved group G containing H, and let K be a quasiconvex subgroup of G. Then the intersection K_1 of K and G_1 is quasiconvex in G_1. As KH is a finite union of cosets k_iK_iH, it follows that if K_1H is closed in $PT(G_1)$ (hence K_1H is also closed in $PT(G)$), then KH is closed in $PT(G)$.

(2) A theorem of M. Hall in [Hall] implies that any finitely generated subgroup H of a free group F is a free factor of some finite index subgroup F_1 of F. As a free factor is malnormal and as free groups are locally quasiconvex, Theorem 1 and Remark 1 imply the result in [G-R].

(3) A theorem of P. Scott in [Scott] implies that given a finitely generated subgroup H of a surface group S there exists a finite index subgroup S_1 of S and a graph of groups decomposition of S_1 such that H is a vertex group and all edge groups are infinite cyclic groups malnormal in S_1. Then H is malnormal in S_1. As surface groups are locally quasiconvex, negatively curved, and LERF, Theorem 1 and Remark 1 imply the result in [Niblo].

(4) If G is the fundamental group of an atoroidal hyperbolic 3-manifold then G is negatively curved. If H is the fundamental group of a totally geodesic boundary component of such manifold, then H is malnormal in G. Moreover, the result of Thurston [Thu] states that such G is locally quasiconvex; hence Theorem 1 implies that for any finitely generated subgroup K of G, the double coset KH is closed in $PT(G)$.

(5) Denote the minimal subgroup of G containing H and K by $\langle H, K \rangle$.

In order to show that KH is closed in $PT(G)$, it is enough to show that for any $g \in G$ such that $g \notin KH$ there exists a set S closed in $PT(G)$ which contains KH, but does not contain g.

Assume that G is LERF and H and K are finitely generated. Fix $g \notin KH$. We can easily find the required closed set S, if we can find a finite index subgroup H_g of H and a set $\{a_i, 1 \leq i \leq m\}$ of right coset representatives of H_g in H such that $ga_i^{-1} \notin \langle H_g, K \rangle$ for all a_i. Indeed, as G is LERF, there exists a finite index subgroup G_1 of G which contains the (finitely generated) subgroup $\langle H_g, K \rangle$, but does not contain the elements ga_i^{-1} for all a_i. Then the coset G_1a_i contains KH_ga_i, but does not contain g, so the closed set $S = \bigcup G_1a_i$ contains the set $KH = \bigcup KH_ga_i$, but does not contain g.

If $H \cap K$ has finite index in H, we can take H_g to be $H \cap K$. The general case is treated below.
Let X be a set, let $X^* = \{x, x^{-1} \mid x \in X\}$, and for $x \in X$ define $(x^{-1})^{-1} = x$. Denote the set of all words in X by $W(X)$, and denote the equality of two words by "\equiv". Let G be a group generated by the set X^*, and let Cayley(G) be the Cayley graph of G with respect to the generating set X^*. The set of vertices of Cayley(G) is G, the set of edges of Cayley(G) is $G \times X^*$, and the edge (g, x) joins the vertex g to gx.

Definition 1. The label of the path $p = (g, x_1)(gx_1, x_2) \cdots (gx_{n-1}, x_n)$ in Cayley(G) is the word Lab$(p) \equiv x_1 \cdots x_n \in W(X^*)$. As usual, whenever it is convenient, we identify the word Lab(p) with the corresponding element in G. Denote the length of the path p by $|p|$, where $|(g, x_1)(gx_1, x_2) \cdots (gx_{n-1}, x_n)| = n$.

A geodesic in the Cayley graph is a shortest path joining two vertices. A group G is δ-negatively curved if any side of any geodesic triangle in Cayley(G) belongs to the δ-neighborhood of the union of two other sides (see [Gr] and [C-D-P]). Let $\delta \leq 1$, $L > 0$ and let $\epsilon > 0$. A path p in Cayley(G) is a (λ, ϵ)-quasigeodesic if for any subpath p' of p and for any geodesic γ with the same endpoints as p', $|\gamma| > \lambda |p'| - \epsilon$. A path p is a local (λ, ϵ, L)-quasigeodesic in Cayley(G) if any subpath of p which is shorter than L is a (λ, ϵ)-quasigeodesic (cf. [C-D-P, p. 24]).

Theorem 1.4 [p. 25 of C-D-P] (see also Gr, p. 187) states that for any $\lambda_0 \leq 1$ and for any $\epsilon_0 > 0$ there exist constants (L, λ, ϵ) which depend only on (λ_0, ϵ_0) and on δ, such that any local $(\lambda_0, \epsilon_0, L)$-quasigeodesic in Cayley$(G)$ is a global (λ, ϵ)-quasigeodesic in Cayley(G).

Recall that H is a μ-quasiconvex subgroup of G if any geodesic in Cayley(G) which has its endpoints in H belongs to the μ-neighborhood of H.

We use the following property of malnormal quasiconvex subgroups of finitely generated groups proven in [Gi 1].

Lemma 2. Let H be a malnormal μ-quasiconvex subgroup of a finitely generated group G. Let γ_1, γ_2 be a path in Cayley(G) such that γ_1 and γ_2 are geodesics in Cayley(G), Lab$(\gamma_1) \in H$, Lab$(\gamma_2) \in H$, and Lab$(\gamma) \not\in H$. Then for any $\rho \geq 0$, there exists a positive constant $N(\rho)$ which depends only on ρ, on G, and on μ such that any subpath of γ_1 which belongs to the ρ-neighborhood of γ_2 is shorter than $N(\rho)$.

Definition 3. Let H and K be subgroups of G. Consider an element l of $\langle H, K \rangle$ such that $l \not\in H \cap K$. There exists a word $w \in W(X)$ representing l of the following form: $w = h_1 k_1 \cdots k_{m-1} h_m$, where h_i represents an element in H, but not in $H \cap K$, k_j represents an element in K,
but not in $H \cap K$, k_i and h_i are geodesics in G, h_i is a shortest representative of the coset $h_i(H \cap K)$, h_m is a shortest representative of the coset $(H \cap K)h_m$, and for $1 < i < m$, h_i is a shortest representative of the double coset $(H \cap K)h_i(H \cap K)$. (The words h_1 or h_m might be trivial.) We call such w_i a good word representative of l. Let p be a path in Cayley(G) with the decomposition of the following form: $p = \eta_1 \kappa_1 \cdots \kappa_{m-1} \eta_m$, where $\text{Lab}(\eta_i) = h_i$ and $\text{Lab}(\kappa_i) = k_i$. If $\text{Lab}(p) = h_1 \kappa_1 \cdots \kappa_m = l$ is a good word representative of l, we will call such p a good path representative of l.

We need the following result, which was proven, but not explicitly stated in [Gi 2]. We use the notation of Definition 3.

Lemma 4. Let H and K be μ-quasiconvex subgroups of a δ-negatively curved group G, and let H be malnormal in G. There exist constants C, λ, and ϵ which depend only on G, δ, and μ such that if $p = \eta_1 \kappa_1 \cdots \kappa_{m-1} \eta_m$ is a good path representative of $l \in \langle H, K \rangle$ and all subpaths η_i are longer than C, then p is a (λ, ϵ)-quasigeodesic in Cayley(G).

Proof. We choose the constants C, λ, and ϵ, as follows. Let A be the number of words in G which are shorter than $2\mu + \delta$, and let $N(2\delta)$ be the constant defined in Lemma 2 for H in G with $\rho = 2\delta$. Let $\lambda_0 = \frac{1}{2}$, and let $\epsilon_0 = 4\mu \cdot A + N(2\delta)$. As mentioned above, there exist constants (L, λ, ϵ) which depend only on (λ_0, ϵ_0) and on δ such that any local $(\lambda_0, \epsilon_0, L)$-quasigeodesic in Cayley$(G)$ is a global (λ, ϵ)-quasigeodesic in Cayley(G). These are the λ and ϵ we choose, and we choose $C = \max(L, \frac{\delta}{\epsilon})$.

Let p be a good path representative of $l \in \langle H, K \rangle$ such that all subpaths η_i are longer than C. In order to show that p is a (λ, ϵ)-quasigeodesic in Cayley(G), it is enough to show that p is a local $(1/6, (4\mu \cdot A + \delta + N(2\delta)), L)$-quasigeodesic in Cayley$(G)$.

As $|\eta_i| > C \geq L$, it follows that any subpath t of p with $|t| < L$ has a (unique) decomposition $t_1t_2t_3$, where t_1 and t_3 are subpaths of some η_i and η_{i+1}, and t_2 is a subpath of κ_i (some of t_1 might be empty). Let t_4 be a geodesic in Cayley(G) connecting the endpoints of t.

If $|t_2| > \frac{2|t_1|}{3}$, then $|t_1| + |t_3| \leq |t|/3$; hence $|t_4| \geq |t_2| - (|t_1| + |t_3|) \geq \frac{2|t|}{3} - \frac{|t|}{3} = \frac{|t|}{3}$.

If $|t_2| \leq \frac{2|t_1|}{3}$, then without loss of generality assume that $|t_1| \geq |t_3|$; hence $|t_3| > \frac{|t|}{2}$. As $t_1t_2t_3t_4$ is a geodesic 4-gon in a δ-negatively curved group G, there exists a decomposition $t_1 = s_2s_3s_4$ such that s_2 belongs to the δ-neighborhood of t_2, s_3 belongs to the 2δ-neighborhood of t_3, and s_4
belongs to the δ-neighborhood of t_4. According to Lemma 2, $|s_3| < N(2\delta)$, and according to Lemma 5 (below), $|s_2| \leq 4\mu \cdot A$. But then $|t_4| + \delta \geq |s_4| = |t_1| - |s_2| - |s_3| \geq |t_1| - 4\mu \cdot A - N(2\delta) \geq \frac{|t_1|}{6} - 4\mu \cdot A - N(2\delta).

Hence $|t_4| \geq \frac{|t_1|}{6} - (N(2\delta) + \delta + 4\mu \cdot A)$, so the path p is a local $(\frac{1}{6}, N(2\delta) + \delta + 4\mu \cdot A, L)$-quasigeodesic in G, hence it is a (λ, ϵ)-quasigeodesic in G.

Lemma 5. Using the notation of the proof of Lemma 4, $|s_2| \leq A \cdot 4\mu$.

Proof. To simplify notation, we drop the subscript i, so t_1 is a subpath of η, t_2 is a subpath of κ, Lab(η) = h, and Lab(κ) = k. Without loss of generality, assume that κ begins at 1 (so it ends at k), then η begins at h^{-1} and ends at 1. As K and H are μ-quasiconvex in G, any vertex v_i on η is in the μ-neighborhood of H, and any vertex w_i on κ is in the μ-neighborhood of K. Hence we can find vertices v_1 and v_2 in s_2, w_1 and w_2 in t_2, h' and h'' in H, and k' and k'' in K such that $|v_i, w_i| < \delta$, $|v_2, (h'')^{-1}| < \mu$, $|w_1, k'| < \mu$, and $|w_2, k''| < \mu$. Then $|h'k'| < 2\mu + \delta$ and $|h''k''| < 2\mu + \delta$.

Assume that $|s_2| > A \cdot 4\mu$. Then we can find vertices, as above which, in addition, satisfy $|v_2, v_3| > 4\mu$ and $h'k' = h''k''$. But then $(h'')^{-1}h' = k''(k')^{-1}$, so both products are in $H \cap K$. As h is a shortest element in the double coset $(H \cap K)h(H \cap K)$, it follows that $|h| \leq |h(h'')^{-1}h'|$. Let r be a geodesic joining h''^{-1} to v_2, let s' be a subpath of η joining v_2 to 1, and let s'' be a subpath of η joining h^{-1} to v_2. Then $|s''| = |s'| + |s''|$, and $|h(h'')^{-1}h'| \leq |h(h''h')^{-1}| + |h'| \leq |s'| + |s''| + |r| + |h'|$; hence $|s'| + |s''| \leq |s'| + |s''| + |r| + |h'|$, so $|s'| + |r| \leq 2|r| + |h'|$. As $|h'| \leq |s'| + |r|$ and as $|r| \leq \mu$, it follows that $|h''| \leq 2\mu + |h'|$.

However, as $|v_2, v_3| > 4\mu$, the triangle inequality implies that $|h''| = (h'')^{-1} \geq |s'| - |r| = |s'| + |v_1, v_2| - |r| \geq |s', v_3| + 4\mu - \mu = |s', v_3| + \mu + 2\mu$. Let a be a geodesic joining $(h'')^{-1}$ to v_3. As $|a| \leq \mu$, the triangle inequality implies that $|a| = (h'')^{-1} \leq |s', v_3| + |a| < |s', v_3| + \mu$. Hence, $|h''| > |h''| + 2\mu$, a contradiction. Therefore, $|s_2| \leq A \cdot 4\mu$.

Proof of Theorem 1. Let H, K, G, λ, and ϵ be as in Lemma 4, and let g be an element of G which does not belong to KH. As G is δ-negatively curved, there exists a positive constant ν which depends only on δ, λ, and ϵ, such that any (λ, ϵ)-quasigeodesic in Cayley(G) belongs to the ν-neighborhood of the geodesic with the same endpoints [C-D-P, p. 24]. Let $N(\delta + \nu + |g|)$ be, as in Lemma 2, for H in G with $\rho = \delta + \nu + |g|$.
As H is LERF, there exists a finite index subgroup H_g of H which contains $H \cap K$ such that if $h \in H_g$, but $h \not\in H \cap K$, then h is longer than $\max[|N(\delta + \nu + |g|)|, C]$.

Let $\{a_i, 1 \leq i \leq m\}$ be a set of shortest right coset representatives of H_g in H. We claim that $ga_i^{-1} \not\in \langle H_g, K \rangle$ for all a_i. Indeed, assume without loss of generality that $ga_i^{-1} \in \langle H_g, K \rangle$. Then ga_i^{-1} has a good path representative $p = \eta_1 \eta_2 \cdots \eta_k$ with $\text{Lab}(\eta) \in H_g$ which begins at 1 in Cayley(G) and ends at ga_i^{-1}. As $g \not\in KH$, it follows that $ga_i^{-1} \not\in KH$; in particular $ga_i^{-1} \not\in H \cap K$, so the definitions of H_g and of p imply that $|\eta| > C$. Hence Lemma 4 implies that p is a (λ, ε)-quasigeodesic in Cayley(G). Also, the definition of H_g implies that η is longer than $N(\delta + \nu + |g|)$.

Let γ be a geodesic in Cayley(G) joining 1 to g, let γ_a be a geodesic in Cayley(G) joining g to ga_i^{-1}, and let γ_p be a geodesic in Cayley(G) joining 1 to ga_i^{-1}. As γ_a, γ_p, and γ form a geodesic triangle and G is δ-negatively curved, it follows that γ belongs to the δ-neighborhood of $\gamma_a \cup \gamma_p$. As was mentioned above, p belongs to the ν-neighborhood of γ_p; hence it belongs to the $(\nu + \delta + |g|)$-neighborhood of γ_a.

If η_1 is non-trivial, then as $\text{Lab}(\eta_1) = g \not\in H, \text{Lab}(\eta_k) = a_i^{-1} \in H$, and η_1 is a geodesic which belongs to the $(\delta + \nu + |g|)$-neighborhood of γ_a, Lemma 2 implies that $|\eta_1| < N(\delta + \nu + |g|)$, a contradiction. But if η_1 is trivial, then as $g \not\in KH$, it follows that η_1 and η_2 are non-trivial. As $g \not\in KH$ and $\text{Lab}(\eta_1) \in K$, it follows that $g^{-1}\text{Lab}(\eta_1) \not\in H$. Then η_2 is a geodesic which belongs to the $(\delta + \nu + |g|)$-neighborhood of γ_a, so Lemma 2 implies that $|\eta_2| < N(\delta + \nu + |g|)$, a contradiction.

Therefore $ga_i^{-1} \not\in \langle H_g, K \rangle$ for all a_i, and Theorem 1 follows from Remark 5.

ACKNOWLEDGMENT

The author thanks Professor L. I. S. Kippod for inspiration.

REFERENCES

