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ON RESIDUALLY FINITE GENERALIZED
FREE PRODUCTS

R. J. GREGORAC

Let S=A}B be a nontrivial generalized free product of the groups
A and B with amalgamated subgroup U and suppose 4 and B are
residually finite groups. Baumslag [1] has given conditions sufficient
for S=AgB to itself be residually finite and these have been used to
investigate the residual finiteness of S by Baumslag [1] and Dyer
[2], when the factors A and B of S are assumed to satisfy certain
additional properties. The question then arises as to the necessity
of these conditions. It is shown here that Baumslag's conditions are
in fact necessary, provided 4 and B satisfy suitable identical rela-
tions.

A group G is residually finite if there exists a set {G;I 1&1 } of nor-
mal subgroups of G such that G/G; is finite for each 1€ I and Nier G
=1; the set {G:|i€I} is called a filter of G [1].

Baumslag has shown

THEOREM 1 [1]. Suppose A and B are residually finite groups with
filters {4:|i€ I} and {B;|jE T}, respectively. The group S=ApB will
be residually finite provided

() {4.NUliel}={B,NU|jeT}
and

(ll) nz A.'U= U=ﬂJ B,U

Now suppose the nontrivial product S=AgB is residually finite
with filter { S| k€K }. Set 4 =S4 and By =SB for each kEK.
Clearly {4:|kEK} and {B:|FEK} are filters of 4 and B satisfying
(i) above. When do they also satisfy (ii)? Using the preceding nota-
tion we state

THEOREM 2. Let w(xy, - - -, x,) =1 be a nonirivial identical relation
on B. Then Myex ALU=U if

(a) the index of U in B is greater than two, or

(b) w(xy, - - -, x2)=1 is not an identical relation of the infinite
dihedral group.

Proor. First note that S;=1 implies that any identical relation
of B is-an identical relation of Ng BS; =R, for the map defined by
r—(rS}) isa monomorphism of R into the cartesian product ][ B.S:/S:.
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Now Ry = <Nk UA, B> SR, because 4: S Sk, so R, satisfies the iden-
tical relation w(xy, - + -, %.) =1. Put X =NgUA4,;. Then R,=X}B.
That X = U now follows from

LEMMA 3. Suppose the gemeralized free product G=HyxL, where
H#Ks=L, satisfies a nontrivial identical relation. Then [H:K]
=[L:K]=2, and the infinite dihedral group satisfies the identical
relation.

ProoF. Suppose [H: K]>2 and let ky and k, be elements in two
different cosets of K in H but not in K. Choose y&L\K. Then
hyhyy and hyyhyy freely generate a free subgroup F of G, so in this
case G satisfies no nontrivial identical relation.

Thus if G does satisfy a nontrivial identical relation, then [H: K]
=[L:K]=2, so K is normal in both H and L. Thus G/K, which is
the infinite dihedral group, must satisfy the identical relation as
required.

As examples we note

THEOREM 4. Let A and B be finitely generated infinite nilpotent groups.
Then S=AyB is residually finite if and only if

(i) A and B have normal series A = A9y 2 A1 2 +-+-,B = By
DBiD - - -, such that 1<[A;: Aia], [Bi: Bia] < o for all 3,

(li) ﬂ.- A,'= 1 =ni Bi,

(i) {UNA4:}={UNB;} and

(IV) ﬂ.— UA.'= U=ﬂ.— UB;.

THEOREM 5. Let A and B be finitely generated infinite nilpotent groups
and let p be a prime. Then S=ALB is residually a finite p-group if and
only if (i) A and B have normal series A=A¢24:2 -+, B=B,
DB1D - - -, such that [A:: Aipa] =p=[Bi: Bina] for all i, and such
that (ii), (iii) and (iv) of Theorem 4 kold.

COROLLARY 6. Let S=gp(a, b|a*=b*) and let p be a prime. Then S
is residually a finite p-group if and only if

(a) both h and k are powers of p, or

(b) k=1 or k=1.

Theorem 4 follows immediately from Theorem 1 and Theorem 2.
Theorem 5 follows from an easy extension of Theorem 1 using the
main result of Higman [3]. The (well-known) corollary to Theorem
. 5 follows because property (iv) fails when k1 and k51 are not both
powers of p.

Although special cases of Lemma 3 are well known (see for example
[4, p. 217, Problem 10]), the proof of the general case given here is
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due to Professor B. H. Neumann. I thank Professor Neumann for
his help with this.
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