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Polycyclic groups with isomorphic
finite quotients

By F.J. GRUNEWALD, P.F. PicKEL and D. SEGAL

1. Introduction

Let F(G) denote the set of isomorphism classes of finite quotients of a
group G. For polycyclic-by-finite groups G and H, ¥(G) = F(H) if and only
if the profinite completions G and H of G and H are isomorphic (see 2.3 below).
When this holds we say that G and H belong to the same “-class. The
purpose of this paper is to prove the following

THEOREM. Ewvery “-class of polycyclic-by-finite groups is the union of
finitely many isomorphism classes.

This result represents the culmination of work that the authors have
been engaged in independently for some time; preliminary results on which
the proof is based are summarized below. The authors are grateful to the
Universities of Warwick and Bielefeld for bringing them together and
making the present outcome possible.

Preliminary results

B denotes the class of polycyclic groups and 3% the class of polycyclic-
by-finite groups.
THEOREM A (Segal [S]). Let G be a BF group and d a positive integer.

Then up to tsomorphism there exist only finitely many groups containing
G as a normal subgroup of index d.

THEOREM B (Pickel [Pl]). Every “-class of finitely generated milpotent
groups 1s the union of finitely many isomorphism classes.
THEOREM C (Pickel [P3]). Let G be a PF group with Fitting subgroup
N. Then N is the Fitting subgroup of G.
To state the next result we need a definition. Let § be an algebraic
matrix group of degree n, say, defined over Q. To G one associates the group
4= = I1,9(Z,) ,
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the Cartesian product over all primes p of the groups 9(Z,); here Z, denotes
the ring of p-adic integers and $(Z,) the zero-set in GL,(Z,) of the rational
polynomials which define the algebraic group 9. The group S(Z) appears as
a subgroup of 9~ if one identifies g € §(Z) with the element of 8 each of
whose coordinates is equal to g. Now for each positive integer m there is
a canonical ring epimorphism

T [1,2,— Z/mZ

(by the Chinese Remainder Theorem), and it induces a homomorphism—to
which we give the same symbol—

Tp: 9 — GL,(Z/MZ) .

(Note that this homomorphism is surjective in the special case where
$ = GL,; this is easy to prove.) We define an equivalence relation ~; on
the set of all subgroups of $(Z) as follows:

X ~5 Y if and only 1f Xrn,, is conjugate to Ym,,
wm G°x,, for every positive integer m.

We can now state

THEOREM D (Grunewald, Segal [GS3]). Every ~g-class of soluble sub-
groups of S(Z) is the union of finitely many conjugacy classes in S(Z).

A quick alternative proof of Theorem B, based on Theorem D, is indi-
cated in Section 3. Further special cases of the Theorem were established in
[P2] and [GS1]; these will not be needed here.

Outline of the paper

To prove the Theorem, we consider a set C of P35 groups contained in a
single “-class. In view of Theorems C and B, we may assume that the
groups in C all have the same Fitting subgroup N, say. We apply Theorem
D a first time to reduce to the situation where the groups in C all act in the
same way on N; in particular, if Z denotes the centre of N, we may assume
that the groups G/Z are all isomorphic. This information is used in order
to bound various parameters that 'play an important technical role in the
following argument.

So far the proof is straightforward. To go further we have to introduce
an auxiliary construction, which has some interest in itself. For G e€(C we
produce a finitely generated abelian subgroup 7,; < Aut@G, such that the
split extension G| T is equal to M;]T,;, where M, is the Fitting subgroup of
G]T,. This is a so-called semisimple splitting of G; the idea has been used
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by several authors, notably H.C. Wang [Wa], Tolimieri [T] and L. Auslander
[A], Chapter IV. However their methods are too unwieldy for our purpose,
and we present a more streamlined approach which we feel sheds some new
light on the matter. Specifically, we show in Section 5 that (under suitable
conditions) there exists a nilpotent supplement C for Nin G. Then C induces
by conjugation a group A of automorphisms of N; as A is nilpotent, the
Jordan semisimple components of the elements of A form a group A,, say.
In Section 7 we show how to define a group T;<Aut G which acts like A, on
N and centralizes C, and establish that T, has the required properties.
Incidentally, the reader interested only in the existence of semisimple
splittings can extract a fairly simple proof of this by ignoring many of the
finer details in Sections 5 and 7; in the present context we also need to know
that the splittings can be constructed in a canonical manner, and that they
then enjoy a certain uniqueness property. Some finiteness lemmas connected
with this are established in Sections 4 and 6.

There is a well known method for embedding a group of the form M|T
into a suitable GL,(Z), when M is a finitely generated nilpotent group and
T < Aut M: one makes M act by right multiplication and T act by conjuga-
tion on a suitable factor ring of the group ring ZM. The details are recalled
in Section 3. To finish the proof of the theorem, we use this technique to
embed the groups M,;]T, into GL,(Z). The degree n will be the same for all
G € ¢, and we are able to show that the images in GL,(Z) of the groups G € ¢
lie in finitely many ~, -classes of GL,(Z). Another application of Theorem
D then finishes the proof.

The main body of the proof occupies Sections 8-15. The proof is divided
into six steps in Section 8 and these are proved in the succeeding sections.
Section 2 begins with the definitions and elementary properties of some
technical constructions which are used throughout.

Notation

B, BB, T denote respectively the classes of all polyeyclic, polyeyelie-by-
finite, and finitely generated torsion-free nilpotent groups.
Fitt (G) = Fitting subgroup of G; if G ePF, Fitt(G) is the unique
maximal nilpotent normal subgroup of G.
G' = derived group of G, 7,(G) = 1*" term of the lower central
series of G.
{,(G) = centre of G, {,(G) = v term of the upper central series of G,
C(G) = hypercentre of G.
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G* = {g*|g € G) for a positive integer k.
9" = h7'gh; lg, R]=97'¢% G, H]={lg, hllgeG, he H); |G, H]=
H), H] for m > 1.
G = profinite completion of G (see §2).
If Nis a £ group,
N©? = Mal’cev completion of N (see §2),
NV = {g'*|ge NY < N for a positive integer k.
iy(H) = isolator in N of H for H < N (see §2).
K]H = split extension of (normal subgroup) K by H.
H =< ;G means H is a subgroup of finite index in G,
H <];G means H<] G and H £,G.
Z, = p-adic integers, Q, = p-adic numbers.
For a linear algebraic group 9 defined over Q,
g” = I],9(Z,), the Cartesian product being over all (finite) primes

[

‘m—1

of Q.
References within a Section n take the form “Lemma k” for Lemma k
of Section n, “Lemma m.k” for Lemma k of Section m when m = n.

2. Notes on completions

In this section we recall definitions and properties of some constructions
that will be used in the paper.

Profinite completions. The profinite topology on a group I' is the
uniform topology on I' with a neighbourhood basis of the identity given by
the normal subgroups of finite index in I'. The profinite completion [of T
is the completion of I in this topology. If I is residually finite, the topology
is Hausdorff and I embeds naturally in I

Now consider a group G € Bg; G is residually finite. The normal sub-
groups of finite index in G form a directed set, and the subgroups G* for
all positive integers k form a cofinal subset, as do the subgroups G™ for all
positive integers n. Thus

G = lim{G/N|N <G}
(1) :1&1{G/G"l0<keZ}
= liZﬁ{G/G"’IO <melZ}.
This last representation gives a representation of G in terms of Cauchy

sequences (a,) with a,a;!, € G* for each ». A null sequence is a sequence
(a,) with a, € G* for each n, and

G = {Cauchy sequences}/{null sequences} .
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A Cauchy sequence represents an element of G if and only if it is a constant
multiple of some null sequence.

It is a well known theorem of Mal’cev that every subgroup of G is the
intersection of the subgroups of finite index which contain it ([Ma]; see also
2.5 below); it follows that if H < G then H is closed in the profinite topology
of G and this topology induces the profinite topology on H. Thus H may be
identified with a subgroup of G; in fact H is the closure in G of H (in the
natural topology of G induced from the profinite topology on G). If H<]G
then H <] G and by considering Cauchy sequences one sees that G/H =(G/H)".

In particular, taking H = G* we obtain

G/G* = (GIG¥" = G/(GY" ;
the first isomorphism comes from the fact that a finite group is equal to its
profinite completion. Now it is easy to see that

(2) GG = (@G,

so that (G¥)" is the closure of G*. Unfortunately it is not in general an easy
matter to identify the closure of a subgroup in a profinite group; thus, for
example, given groups I' and A and an isomorphism I’ = A, we may at once
deduce that the isomorphism must send I'** onto A*, but without further
information one cannot then deduce that the closure of I'* gets mapped to
the closure of A* (there is thus a gap in the proof of Proposition 1 of [P2]).

When the groups are polycyclic-by-finite, the extra information required is
provided by

ProPoOSITION 2.1. i) If G s in PF then the natural topology on G
cotncides with the profinite topology.
ii) If G is in PBF then
G* = (G*
Sfor every positive integer k.
Part (i) will often be used implicitly; its most important consequence is

that every isomorphism G = H for PF groups G and H is a topological
isomorphism.

We shall frequently need the following observations, which are easily
verified by considering Cauchy sequences:

LEMMA 2.2, Let Gbe in PF. i) If H<;G and N < G then
HNnN=HNN).
ii) If H<;G and N <G then
(HN)" = HN .
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iii) If H< G and N <G then
(HN)" = HN .
Proof of 2.1. (ii) In view of (2) above, it remains to show that
(G*" < G*. If G is either finite or free abelian this is easy to see. Suppose

G isinfinite and let N = 1 be a free abelian normal subgroup of G; then the
result holds for N, and by induction on the Hirsch number we may assume
that it holds for G/N also.

Now there exists [ > 0 such that G' N N < N*, and without loss of
generality we take ! so that k|l. By inductive hypothesis,

(GIN)) = (GIN))",
from which it follows, by Lemma 2.2 (ii), that
G'N = (G'N)" = (G')"N .
Therefore
GY =G(NN@GYH)=GINNGY
by Lemma 2.2 (i). But NN G' < N*and (N*" = N* by the choice of N, so
GHY < G'N*< G
Now taking N = G and H = G' in Lemma 2.2 (ii), we obtain
G = (G"Y"G; thus G = G*G and so
1G:G*| = |G:G NG <|G:G* = |G: (G| .
Since G* < (G*)" it follows that G* = (G*)".
Proof of 2.1. (i) The subgroups ({;")A form a base for the neighbour-
hoods of 1 in the natu}'al topology on G. I:Iow by part (ii), each subgroup
G* has finite index in G, so the subgroups G* form a base for the neighbour-

hoods of 1 in the profinite topology on G. Hence by part (ii) again, the two
topologies coincide.

COROLLARY 2.3. If G and H are in VB, then 5 (G) = S (H) iof and only
if G = H.
Proof. “If” follows from Proposition 2.1 (ii) and the remarks preceding

it. “Only if” follows from the representation (1) above; cf. [P2], Proposi-
tion 1.

The congruence topology. If G is a subgroup of GL,(Z), one defines the
congruence topology on G by taking as a base for the neighbourhoods of 1
the congruence subgroups
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G. = {9eGlg = 1 mod k}

for positive integers k. It is clear that this topology is contained in the
profinite topology, for any G; in fact we have

THEOREM 2.4 (Formanek [F], Theorem 2; Wehrfritz [We 2], Theorem 2).
If GeBF then G is closed in the congruence topology on GL,.(Z) and the
congruence topology on G coincides with the profinite topology.

Remark 2.5. This shows that every subgroup H of G is closed in the
profinite topology on G and that this topology induces the profinite topology
on H; as every PF group G can be embedded in some GL,(Z) (see Chapter
IV of [A]) one gets an alternative proof of the theorem of Mal’cev mentioned
above.

The completion of GL,(Z) in the congruence topology is contained in
GL: = JI,GL.(Z,)

where the Cartesian product is taken over all primes p. As a consequence of
Theorem 2.4 we have

COROLLARY 2.6. Suppose G < GL,(Z) and GeF. Then G can be
identified with the closure of G in the congruence topology on GL3.

Completions of T groups. Next we consider groups in%, that is, finitely
generated torsion-free nilpotent groups. In any % group N we can choose
a generating set {x, = 1, x,, - - -, x,} such that for each ¢ = 1, z, is central in
N modulo {z,, ---, ,_,> and N/, ---, x,_,> is again in T. Such a system
(x,, -+, x,) is called a Mal’cev basis for N; each element of N can then be
uniquely expressed in the form

(3) wr) = wr, -, 7)) =@ T

with »,, -+, #,€Z. The group operations in N are given by

(4) w(r) - w(s) = w(py(r, 8), -+, P.(r, 8)) ,
w<r)m = w(ql<m7 r)y Tty q'n(my r)) ’

where the p, and ¢, are certain polynomials in 2n, respectively n + 1,
variables. If we allow 7, -- -, 7, to range over Q, the set of expressions (3)
with the operations (4) forms a group N¢, the Mal’cev completion of N: this
is the unique (up to isomorphism) minimal radicable torsion-free nilpotent
group containing N. Every element of N© has some positive power in N,
and every automorphism of N extends uniquely to an automorphism of N©.
See Chapter 6 of [H].
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For a positive integer k, we define N'* to be the subgroup of N°
generated by the k' roots of all elements of N. Then automorphisms of N
extend uniquely to automorphisms of N*,

LEMMA 2.7. N has finite index in N'*, and N*¢ T.

Proof. The second claim follows from the first. Now it is easy to see
that the factors of the upper central series of N? are finite-dimensional
Q-vector spaces; from this it follows that if H < K < N? and K™ < H for
some m > 0, then | K: H| is finite. Thus for the first claim it will suffice to
show that there exists m > 0 such that (N"*) < N. In fact we shall prove
that this holds with

m = kelernre

where c¢ is the nilpotency class of N. Put M = NY*. Then every element of

M is of the form y,y, - - - y, for some s with y* € N for each 7. Since~,,, M =1,
the following claim implies our result:

Claim. f Y =<y, -+, yp=Mand1=j=<c +1,

(5) W ¥ ey, Y T Y

Proof of claim. Clearly (5) holds with 7 = 1. Suppose that (5) holds
for some j = 1. Then there exist we (¢, ---, y*> and certain (5 + 1)-fold
commutators »,, ---, r,, say in the elements y, ---, y,, such that the left-
hand member of (5) is equal to

Wr Ty 7y .
Raise this to the power k’+' to obtain
( 6 ) (ylyZ tee ys)k(jHHjJr?)/Z = (w/rl/r2 et Tt)kjﬂ .

Now modulo 7v,,Y, each (j + 1)-fold commutator is central and is homomor-

phic as a function of each argument; this shows that the right-hand member
of (6) is an element of

Yty = Yo Vi Y .

We deduce that (5) holds with 5 + 1 in place of 7, and the claim follows by
induction.

We turn now to profinite completions of T groups. For a prime p,
define the pro-p topology on the T group N by taking the normal subgroups
of p-power index in N to be a base for the neighbourhoods of 1. The com-
pletion of N in this topology is denoted N,,. This group can be realized as
the set of expressions (3) with », -- -, », ranging over Z,, and group opera-
tions given by (4), see [P1], Lemma 1.3. Since every finite nilpotent group
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is the direct product of its Sylow subgroups, we have

A~

N = lim{N/N*|0 < k e Z}
= I, lim {N/N*|0 < i ¢ Z}
= HpNP *

It is evident that N is nilpotent, of the same class as N.

T groups and Lie algebras. For details of what follows, see [Bal,
Chapter 4 and [P1], Section 3. Let N be a & group. To the group N€¢is
associated a finite-dimensional Lie algebra A over Q and a bijective map
log: N? — A with inverse exp: A — N©°. (These may be visualized as applying
the usual power series to a unipotent representation of N° by matrices over
Q, as in Section 3 below; as the matrices are unipotent the series will turn
out to be polynomials.) We have

log (xy) = log (x) * log (y)
where * is given by the Baker-Campbell-Hausdorff formula, and for 7eQ
we have
(7) log (x%) = qlog (%) .

Group automorphisms of N? correspond bijectively to Lie algebra automor-
phisms of A via

log (x?) = (log (2))? .
We shall usually identify A with N via log, and hence identify Aut (N9
with Aut (A). Now there is an algebraic Q-group S such that
Aut (A) = 8(Q) ;

(9(Q) is the subgroup of GL(A) consisting of those matrices which satisfy
certain polynomial equations, namely the equations which say that the Lie
multiplication is preserved).

The group N in ¥ is called lattice milpotent if the subset log (N ) of
A =log(N?) is an additive subgroup of A. While not every N in ¥ is lattice
nilpotent, each such N is contained as a subgroup of finite index in a lattice
nilpotent group M with N < M < N° ([Mo], Theorem 2). The intersection
N of all lattice nilpotent subgroups of N© containing N is called the lattice
hull of N; clearly N is lattice nilpotent, | N: N| is finite, and every automor-
phism of N extends uniquely to an automorphism of N.

Now assume N is lattice nilpotent. Then log(N) really is a lattice in
A, i.e., a free Z-submodule which spans A over Q; this follows from (7) and

the fact that log(N) is then additively finitely generated. We need the
following result of Blackburn:
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LeEMMA 2.8 [Bl]. For each prime p and each positive integer ¢ there 1s
an integer d = 0 such that for every T group N of class ¢ and every 1 = d,
every product of p*'"™™ powers in N is a p*~"*® power.

Applying this to our lattice nilpotent N we deduce that for each © = d,

p'log (N) < log (N”*) < p*~*log (N) .

This shows that log is a homeomorphism of N with its pro-p topology onto
log (N) with its pro-p topology (as additive group), i.e., its p-adic topology.
We may thus extend log to a homeomorphism between the respective
completions

log: N, — Z,®, log (N) ;

as before we shall use this to identify N,, with Z,®,log(N). Under this
identification, the various automorphism groups are related as follows (we
choose a Z-basis of log (N) to be a Q-basis of A, thereby specifying a concrete
representation of § = Aut(A) by matrices):

LEMMA 2.9 ([P1], Proposition 2.4). Suppose N is lattice nilpotent. Then
there exist an algebraic Q-group & and compatible isomorphisms

(a) Aut(N?®) = G(Q);

(b) Aut(N) = $(Z);

(¢) Aut(N,) = S(Z,) for each prime p;

(d) Aut(N) =TI, Aut(N,) = I,9(Z,) = ¢

Extensions of PF groups. Consider next a 135 group G with a normal T
subgroup N. Let {g.|a@ € A} be a transversal to the cosets of Nin G. Then
every element of G can be written uniquely in the form z-g, withxe N
and a€ A. We have

(8) (9.)(ygs) = xy’ f(a, B)g;

where ¢, is the automorphism of N given by conjugation with g.', ¢, is
the coset representative of ¢,9;, and f: A X A — N is the 2-cocycle defined
by 9.9: = fla, B)g,. Using this data we define the group N°G to consist of
expression zg, with x € N, ae A, and with multiplication defined by (8):
this is possible because f(a, 8)e N < N? and ¢, extends uniquely to an
automorphism of N°. If N< N < N?and N is “normalized by G”, i.e., N
is invariant under the automorphisms ¢,, we define NG < N°G similarly.
Any automorphism of G stabilizing N has an obvious extension to N°G.

LEMMA 2.10. Let N and G be as above, with N normalized by G. Then
(a) N <] NG and NG/N = G/N;
(b) If |[N: N| < <, then |[NG:G| = |[N: N| = [(NG)": G)|;
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(¢) Suppose M <| H with Me < and HeLF, and 6: H G sends M to -
N. Then 0 extends to an 1somorphism (M%)~ H— (N @.

Proof. (a) is clear from (8). For (b), let {t,| € I} be a transversal to
the left cosets of N in N. The same set is then a transversal to the left
cosets of G in NG. Since N is residually finite, there exists k > 0 such that
the elements ¢, lie in distinct cosets of N modulo N*. Thus if (¢;;,) with
z;€ N is a Cauchy sequence in N, the sequence (t;;) must be eventually
constant. Hence the ¢, are representatives for the left cosets of N in (N)”
and thus also for the left cosets of G in (NG)". A similar argument using
also Lemma 2.2 (ii), (iii) gives (c).

Recall that the isolator i(H) = iy(H) of a subgroup H in a nilpotent
group N is the set of elements z € N such that x has some positive power
in H; then i(H) is a subgroup of N, 4i(H) = i(H), and if N is finitely
generated then |i(H): H| < «. We say H is isolated if i{(H) = H. For all
this, see Chapter 4 of [H]. Note that if H < Ne I then

iy(H)=HeNN.

LEMMA 2.11. Suppose G € LF, N<]G is in T and Q is an isolated sub-
group of N with Q <|{G. Let k be a positive integer and put

Q" =1ym(@) = QN N,

Then N'*/Q* can be identified with (N/Q)"* and (N'*G)/Q* can be identified
with (N/Q)"* (G/Q).

Proof. Consider the map 6: N— NV*/Q* induced by the inclusion
N—N"*, Then Ker6 = NN Q* = Q since Q is isolated in N. Since each
element of N6 has a k" root, and NV*/Q* is generated by k' roots of elements
of No, 6 induces an isomorphism of (N/Q)"* onto N*/Q*.

For the second part, we use the first part and the observation that a
transversal to the right cosets of N in G maps onto a transversal to the
right cosets of N/Q in G/Q; thus we may identify the right cosets of NVEIQ*
in (NV*G)/Q* with corresponding cosets of (N/@)* in (N/Q)* (G/Q).

LEMMA 2.12. Let G € $F and suppose N = Fitt(G)e Z. Let Q = (@) be
the hypercentre of G; then Q < N. Let N<,N < N° with N normalized
by G. Then

(a) N = Fitt (NG);

(b) @* = NN Q2 is the hypercentre of NG;
(¢) N = Fitt(G);

@) Q is the hypercentre of G.
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Proof. (a)and (b) are straightforward and (c¢) is Theorem C. We prove
(d). There exists m such that [@, .G] = 1; considering Cauchy sequences,
one deduces that [@, mé] =1, so certainly Q < C(é). In view of (e), it will
therefore suffice to show that G acting by conjugation has no fixed points
in 1\7/@. Now it is not hard to verify that N/Q is torsion-free, so we may
choose a Mal’cev basis z,, - - -, 2, for N such that @ = <z, - - -, z,) for some
r, with » <n (if » = n the result follows from (c)); we may also suppose
that x,, - - -, *,:., Say, generate the centre of N modulo @, which we shall
call Z, i.e.,

Z|Q = L(N/Q) = QL&psy, -+, 2,4)/Q -
Now it follows from the structure of N that 2/@ is the centre of N/Q; hence
if G has nontrivial fixed points in N /Q, it also has some in Z/Q. Hence there
exist, for each prime p, p-adic integers \,, ---, \,, not all zero, such that
TI %, is centralized by G modulo @,. This is equivalent to the existence of
a nontrivial p-adic solution to a certain finite set of homogeneous linear
equations over Z, corresponding to conjugation by a finite set of generators
for G. But then there must exist a nontrivial solution in Z for the equations,
which means that G has a nontrivial fixed point in Z/Q. This is impossible
by the definition of Q. (One uses a similar argument to show that the centre
of N/Q is Z/Q.)
3. Representations of polycyclie groups

Let N be a & group of class ¢, with integral augmentation ideal n. Let

T./n*! be the Z-torsion submodule of ZN/n°*!, and define
V(N) = ZN/T, .

LEMMA 1. There is an injective homomorphism B = By: NJAut N —

Aut V(N), such that
(r + Ty = (rp)* + Ty

for all r€ ZN, pre N, x € Aut N.

We omit the proof as this is well known. It depends on the theorem of
Jennings [J] that

Ql+wHYNN=1.

LEMMA 2. Suppose 0 = q € Z satisfies qTy < nwt'. Let 0 #meZ. Then
there exists k > 0 such that

NE< (1 4+ nt' 4+ mgZN) N N .

Put N = N/N* and write it for the integral augmentation ideal of N.
Then there is a canonical tsomorphism
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VIN)/mV(N) = (¢ZN + w!)/(mqZN + ne+) .

Proof. Multiplication by ¢ gives an isomorphism

V(N)mV(N)—> (gZN + n*)/(mqZN + n'*') .
Compose this map with that induced by the canonical isomorphism
ZN/(N* — 1)ZN — ZN .

LEMMA 3. Let M and N be X groups and suppose M = N. Then there
exists an isomorphism o: V(M) — V(N), and if ¢*: Aut V(M) — Aut V(N)
denotes the induced isomorphism, then

MB,0* ~ NBy in Aut V(N) .

Here we are identifying V(N) with Z" by choosing a Z-basis, so that

Aut V(N) = GL,(Z); and ~ denotes ~g,,.

Proof. M and N have the same class, ¢, say. Choose ¢ > 0 so that
qT, <m't'and ¢T, < n°t!, and choose k£ > 0 so that

ME<(A4+mt +2¢ZMYNM and N*<(1 4+ ntt +2gZN)N N .

As M= N we have M/M*= N/N*, hence by Lemma 2 it follows that
V(M)2V(M) = V(N)/2V(N). As V(M) and V(N) are free Z-modules, they
are isomorphie. Pick any isomorphism o: V(M) — V(N).

Now let 0 =« meZ. We must show that

Mpg,0*t,, and NBy«,

are conjugate in Aut V(N)/mV(N), where 7, denotes the canonical map
Aut V(N) > Aut V(N)/mV(N).

Arguing as above with m in place of 2, we obtain an isomorphism

Pu: VIM)/m V(M) — V(N)/mV(N) .

Denote by g,.: VIM)/mV(M)— V(N)/mV(N) the map induced by o, and put

Y = 0;'¢,, € Aut V(N)/mV(M). Now recall that ¢, was defined via isomor-
phisms

IM/(M* — )ZM — Z(M/M*), ZN/(N* — 1)ZM — Z(N/N*)

and

P*: M/M* —— N/N*, say,
for a suitable &k > 0. By checking the definitions we find that if a € M and
b e N satisfy

(aM*p* = bN*

then

(@By0*T,) -7 =7 (bByT,) -
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It follows that

(MBMO.*HM)r = NBNn.m
and the lemma is proved.

We now digress briefly to prove Theorem B:

THEOREM (Pickel [P2]). Every “-class of finitely generated milpotent-
by-finite groups is the union of finitely many isomorphism classes.

Proof. By Theorem A, it will suffice to prove this for a ™-class C, say,
of T groups. Fix Ne . By Lemma 3, there exists for each M € € an injective
homomorphism B3,05%: M — Aut V(N) = GL,(Z) such that the images Mg3,0%
all lie in the ~-class of NB,;. Theorem D then shows that these images lie

in finitely many conjugacy classes of Aut V(N), and a fortiori in finitely
many isomorphism classes.

Remark. This proof of Theorem B is more economical than it may
appear, because it only needs the special case of Theorem D concerning
unipotent subgroups of GL,(Z). This is very much simpler that the general
case and in fact follows easily from Theorem 2 of [GS2].

LEMMA 4. Let M, N be T groups and S, T be polycyclic subgroups of
Aut M, Aut N respectively. Let H< M]S and G < N]|T, and suppose there
exists an isomorphism @: (M]S)” - (N]T)" such that Mo = ]\7, §q) = Tand
ﬁcp = G. Leto*: Aut V(M) — Aut V(N) be as given in Lemma 3. Then

HB,0* ~GBRy i1m Aut V(N).
Proof. Let 0 2 meZ. We must show that
HB,o*m, 1is conjugate to GBy7w,, in Aut V(N)/mV(N) .

To this end, define ¥ € Aut V(N)/m V(N) as in Lemma 3; only make sure that
the positive integer k, chosen before so that M*C 1 + m*+! 4+ mqZM ete., is
so large that we also have

(M)S)Bym, =1 = (N]T)pBym,, .

Now @ induces an isomorphism ¢*': H/ H* - G/G*, and it will suffice to show
that if h e H, g € G satisfy

(hH"p" = gG*
then

(hBuO*Tw) - Y = Y(GBTm) -
Now choose | = k so that

(MIS'NH<Z HY ( MIS)NM <MY (M]S)'NS<S*and (N]T)'NG < G* ete.
Then @* is induced by an isomorphism @: (M]S)/(M]S)' — (N]T)/(N]|T)"
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Without loss of generality we may assume that
(h- (M]S))p® = g-(N]T) .
We may then write h = as, g = bt whereae M, s€ S, be N, te T satisfy
(aM*)p* = bN*, (sS¥)p*¥ = tT*

(@'® here denoting the various maps induced by @ on the relevant quotient
groups). It will now suffice to check that

(aBy0*m,) Y = 7(bBy7w,) and (s8,0*m,) 7 = Y(tBNT.) ,

a routine verification which we shall omit.

4. A cohomological lemma
Here we give some finiteness results, mainly due to D.J.S. Robinson.

LEMMA 1. Let M be a finitely generated free Z-module and X a nilpotent
group acting on M with C,(X) =0, i.e.,, H(X, M) =0. Then H{(X, M)
and H ‘(X , M ) are finite. If X is also finitely generated, then H*(X, M) is
finate.

LEMMA 2. Let M be a finite-dimensional Q-module and X a nilpotent
group acting on M. If M(X — 1) = M then
HX,M)=HX,M)=0.
Lemma 2 is a special case of [R], Corollary AB. Now let M and X be as
in Lemma 1. Theorem F of |R] shows that H'(X, M) is finite, and Theorem

D of that paper shows that H*(X, M) has finite exponent. The final claim
of Lemma 1 will therefore follow from

LEMMA 3. If A is a finitely generated Z-module and G s a finitely
presented group acting on A then HXG, A) is finitely generated.

Note that every finitely generated nilpotent group is finitely presented.

Proof. Suppose G is presented as F/R where F'is a free group of finite
rank. Then the relation module R/R’ is a finitely generated G-module, and
so Hom,(R/R’, A) is finitely generated as a Z-module. But H*G, A) is a
homomorphic image of Hom, (R/R’, A), by |G|, Chapter 3, Proposition 6.

It remains to discuss the second claim of Lemma 1, concerning the
completions. Here M is given the structure of an X-module via the identi-
fication

(M|X) =M|X.

Proof that H'(X, M) is finite. Assume that M = 0 and put Y = C(M).
Then Y <]X so there exists x € X\Y with « central modulo Y. The map
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= p(x — 1) is then an X-module endomorphism of M; let N be its kernel.
Then N+= M and M/N = M(x — 1). So HYX, M/N) = H' (X, N) =0. We
distinguish two cases.

Case 1. N =+ 0. By induction on the Z-rank of M, we may suppose that
H'(X, N) and H(X, (M/N)") are both finite. As (M/N)" = M/N it follows
that H‘(X, M) is also finite.

Case 2. N =0. Then M(x — 1) = M, so there exists m = 0 in Z such
that M(x — 1) = mM.

Suppose to start with that X is abelian. Let d: X — M be a derivation.
Since mM < M(x — 1), it is also the case that mM < M(z — 1), hence there
exists gt e M with

m-xo6 = p(x — 1) .
If y € X then zy = yz and we deduce that

0 = (xy)d — (yx)d = (xd)(y — 1) — yo(z — 1),
whence
(m-yo — py — D)z —1)=0.

But « — 1 kills nothing in M (as N = 0, z — 1 is nonsingular as an endomor-
phism of Q ® M, hence also as an endomorphism of Z,® M for each prime
D); SO

m-yo =y —1).
Thus md is an inner derivation. We have now shown that

mHX, M) =0.
It follows that mDer (X, M) < M«/r where 4 is the map sending each element
of M to the corresponding inner derivation. Since M/mM is finite, so is
M’\ll‘/mM'\/f. Since M is Z-torsion free, we get

H'X, M) = Der (X, M)/ My = mDer (X, M)/mMy < Mvy|mMy .

Thus H'(X, M) is finite.

In general, suppose X is nilpotent of class ¢ > 1 and argue by induction
onc¢. Put

K= (X)) <) .

Then HY(K, M) = 0 since x € K, and K is nilpotent of class at most ¢ — 1, so
by inductive hypothesis H ‘(K M ) is finite. Now there is an exact sequence
HYX/R, M*y— HYX, M) — HYK, M)

(where A” is shorthand for H(B, A)); the maps are the obvious ones and
exactness is easy to verify. As M K< Cy(x) = 0, the left-hand term in the
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sequence is zero. As the right-hand term is finite, H ‘(X , M ) is also finite
and the proof is finished.

5. Nilpotent supplements

In this section we lay the groundwork for the construction of semisimple
splittings.

PROPOSITION 1. Let N bea T group and G a P group with G < N < G.
Then there exists k > 0 such that for every subgroup N of N containing
NY* and normalized by G, there is a nonempty set C = Y (N) of subgroups
of NG with the following properties:

1) for each X € 9C, X is nilpotent and NX = NG;

2) assume |N: N| < co. Then given X €9, the groups X\ as N runs
through automorphisms of (NG)" fizing (N)" lie in finitely many conjugacy
classes in (NG)™;

3) suppose N < N are two subgroups of N® normalized by G and con-
taining NV*. Then for each X ¢ 9C(N) there exists Y € 9(N) such that

X=YNNG and Y=(YNN)X.

Remark. We have only stated the properties of $C which we are going
to need. In fact 9C is in many ways like the set of nilpotent projectors, in
the sense of formation theory. For example, ¢C is in fact the set of maximal
nilpotent supplements for N in NG, it consists of finitely many conjugacy
classes of subgroups in NG, and each X e¢X is self-normalizing. After
writing the first version of this paper we discovered that part (1) of the
proposition, or rather an essentially equivalent result asserting the existence
of a nilpotent supplement to N in some subgroup of finite index in G, has
already been proved by D.I. Zaicev in [Z]; it also follows from work of
Newell, [N]. In fact part (1) can be proved very quickly using Lemma 4.2
and a simple inductive argument; the rather complicated machinery we are
about to introduce is needed only for part (2).

Let M be a torsion-free nilpotent group and G a group operating by
automorphisms on M. Define

"M, G) = 14[M, G] .

Thus I'(M, G) is the smallest i1solated G-invariant normal subgroup K of M
such that G acts trivially on the quotient M/K. For ¢ > 1 define inductively
T'(M, G) = T(I'"(M, G), G) .

Then
Mz=2TM,G)z--- =zT"(M,G) = - -~
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is a descending series of isolated normal subgroups of M. If M has finite
rank this series becomes stationary after finitely many, say =, steps, and
we define the subgroup B(M, G) by

M, G) =I+(M, G) = B(M, G) .
Then B(M, G) is the smallest isolated G-invariant normal subgroup B of M

such that G acts milpotently on M/B. An argument similar to the proof of
Lemma 2.11 enables one to verify the following:

LEMMA 1. Suppose Ne % and G acts on N. Then
a) T'(N,G) = NNT(NY G);

b) T'(N®, G) = iye'(N, G);

¢) B(N,G = NnNBWNNY G);

d) B(N? G) = iyeB(N, G).

LEMMA 2. Suppose N € T and B is an isolated normal subgroup of N€.
Put K =T'(B, N%. Then

KNN=IBNN,N).

Proof. The containment = follows from the definition. For a subgroup
C of N°, write C = i,e(C). The corollary to Theorem 4.6 of |H| shows that
[BNN), N]<[BNnN, N .
Now (BN N)” = Band N = N9, so we get K <[BN N, N|™ and therefore
KNNZENNO[BNN,N"T=I'BNN,N).

LEMMA 3. Suppose G ¢ RF and N<|G is in L. Then I'(N, G)" 1is the
closure in G ofF(N, G), and B(N, G)" is the unique smallest isolated, closed,
G-invariant normal subgroup B of N such that G acts nilpotently on ]\7/B.

Proof. [N,G] <[N, G] <T(N, G) and T(N, G) N N is isolated in N, so
T(N, G) <T(N, G). It is easy to see that [N, G] < [N, G|" =T(N, G)", and as
I'(N, G)" is isolated in N it follows that I'(N, G) <T(N, G)". Thus

(N, G) =T(N, G) <T(N, G)",
which establishes the first claim. For the second claim, it is easy to see that
B(N, G)" is an isolated, closed, G-invariant normal subgroup of N and that
G acts nilpotently on the quotient N/B(N, G)". Suppose C < B(N, G)” is
another such subgroup of N; we must show that C = B(N, G)". Now G acts
nilpotently on N/(C N N) and C N N is isolated in N, so CN N = B(N, G).
Therefore since C is closed we have C = (C N N)™ = B(N, G)", as required.

For the proof of Proposition 1, we start by making a construction in
the Mal’cev completion
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V =N¢,
where N = G’ is a T subgroup of the P group G. Define
K,=V,
B, = B(K,_,, G) for 1 =>1;

K, =T(B,V) for 1=1.

From the definition, it follows that K, has smaller rank than B, if B, = 1,
so there exists n such that

V=K,zB,>K,=z--->K,=z2B,;;, =1.
LEMMA 4. In the group VG there is a series of subgroups
(1) VG =C,>C,>--->C,=C
such that
B.NC, =K, BC,=C,_, for L<1 <,
and C,_,/B; is nilpotent for 1 <1 <mn + 1.
The group C is milpotent and VC = VG.

(2)

Proof. The groups C, are constructed inductively. It is clear that
C,/B, = VG/B, is nilpotent. So suppose C,, ---, C;_, have been found and
have the stated properties. Write H = C,_, and put M = B,/K,. Note that
since B,C; = C;_ for j =1, ---,1 — 1, we have VH = VG. Now it follows
from the definitions that M is a Q(VG)-module on which V acts trivially,
and that M(VG — 1) = M. Hence M(H — 1) = M, and as H/B, is nilpotent
it follows by Lemma 4.2 that

H*H/B, M) =0.
Therefore the extension
1— B,/K,— H/K,— H/B,—1
splits, so there exists a group C, < H such that
BC,=H=C,_,, BNC =K,.
Also C,/K, = H|B, which is nilpotent, and C, acts nilpotently on K;/B;., by
definition of B,;,. Hence C,/B,., is nilpotent.

Thus C; has all the required properties. The final statement of the
lemma is clear.

Now define ¥X'( V') to be the set of all subgroups C of VG which occur at
the end of a series like (1) satisfying (2) in the above lemma. Thus the
content of Lemma 4 is just that ¥X(V) is nonempty. With this at our
disposal we are ready for the
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Proof of Proposition 1. Choose Ce9C(V). Then VG = VC. As G is
finitely generated, there exists k > 0 such that G < N¥* C. Then if NV* <
N < V and N is normalized by G, we get

NG = N(Cn NG) .
Thus putting
X (N)=Cn NG
we have
NG = NX,(N) and X,(N) is nilpotent.
Now define
X(N) = {X(N)|CeX(V) and NC=G}.

The choice of k above ensures that 9C(N) has at least one member provided
NY* < N<V and G normalizes N, and part (1) of the proposition is
established.

Next we prove part (3). Suppose N* < N < Nand X = X,(N) e (N).
Put Y = X,(IN); it is clear that Y e 9C(N). Moreover

YNNG =(nNG)NNG=CnNG = X;
and
Y = YNNG = Yn NNG)
=YNNNX)=YnNX=(YnN)X.

To prove part (2) we must refer to the details of Lemma 4. To simplify
the notation let us assume that N = N (that is, we replace G by NG; this
will not upset the definition of the B, and K,). Then X = C N G where C is
the last term of a series (1) satisfying the conditions (2) of Lemma 4. Write

B,=B,NN, K.=K,.nN, X.=KX.
Then X, < G N C, for each 7, and

G=NX=X,>X>--->X,=X.
First claim.

B.NnX,=K,, BX =BX.
This follows at once from the definitions and (2).

Second claim. B,X, is a subgroup of finite index in X,_,. To prove this
it will suffice to show that every element of K, , has some power in B,X,,
since K;_, X = X,_, and X,_/B, is nilpotent. Now

Ki—l == Nm Bi-—l ﬂ Civl - Nm'Bi(Bi_l ﬂ C) ’
so let us take w = bce K,_, withbe B, and ce B,_, N C. There exists » > 0
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such that e B,_,NCN N = B,_, N X, and then
w" = b'e” where b =bb"'--- b "e€B,NN=B,.
Thus w” € B,(B,_, N X) < B,X and the claim is established.

Third claim. B,/K, is a finitely generated free Z-module, X,/K, is
nilpotent, and X,/K, acts fixed-point freely on B,/K,.

The first two statements are immediate from the definitions. For the
third, recall that M(VG — 1) = M where M = B,/K,. As VG = VX and V
acts trivially on M it follows that M(X — 1) = M, and hence by Lemma 4.2
that H%(X, M)=0. In other words X acts fixed-point freely on M; as X; =X
and B,/K, is isomorphic to a submodule of M, the claim follows.

Now we consider what happens in the profinite completions. Let X be
an automorphism of G fixing N.

Fourth claim.

(B)"» = (B)"~ and (K)"» = (K,)~ for each i.

This is because (B,)" is the smallest closed isolated subgroup of (K,_,)"
which is normal in G and such that G acts nilpotently on (K, ,)"/(B,)", and
(K, is the closure in (B,)" of I'((B)", N), by Lemmas 1(c), 2 and 3. As
(K)"» = Nx = N = (K,)", the claim follows by induction on <.

We can now prove part (2) of the proposition: \ fixes X, = G. Suppose
inductively that 7 > 0 and that there are only finitely many possibilities up
to conjugacy for XHN Then it will suffice to show that there are only
finitely many possibilities for X\ up to conjugacy under the assumption
that » fixes X, , as well as N: the result will follow by induction since
X, = X.

Put Y, = B,X,. Claim 2 shows that | X, : Y;| is finite. Therefore
[ X Y,| is finite, and as X, , has only finitely many subgroups of any given
finite index and X, ,» = X, ,, there are only finitely many possibilities for
f’ix. So we may assume that )\ fixes Y, also.
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Thus X\/(K,)" is a complement for (B,)"/(K,)" in Y./(K.)". The set of con-
jugacy classes of such complements in ﬁ/(K’i)A isin 1 — 1 correspondence
with

H'((X)/(K.)", (B)[(K.)) = H((X/K.)", (B/K)") .
By claim 3 and Lemma 4.1 this cohomology group is finite. Hence up to

conjugacy in Y, there are only finitely many possibilities for X\, and we
are done.

6. On Jordan decomposition

Let k be a perfect field and x € GL,(k). Then there exists a unique pair
(x,, x,) of matrices in GL,(k) such that x, is unipotent, z, is diagonalizable
(over some extension field of k), and

T L, = XX, = T ;
this is the multiplicative Jordan decomposition of x. See Wehrfritz [Wel],
Chapter 7 for a discussion (he writes x, where we write x,); the fact that

the decomposition takes place in k follows by elementary Galois theory from
the uniqueness. If X is a subgroup of GL,(k) we write

X, ={r.JreX}; X, ={r,|rveX]}
(this differs from Wehrfritz’s notation). If now X is nilpotent, then it
follows from [Wel], 7.11 and 7.13, that X, and X, are subgroups of GL,(k)
and
X=X, X)=X,xX,.

If § < GL, is an algebraic group defined over k and X < 9(k), then we also
have, by [Wel], 7.3,
(X, X,) = 9(k) .

In this section we establish two main results. The second, Proposition
2, says that (X,)” = (X),; this is explained below. First we deal with

PROPOSITION 1. Let I' be a soluble subgroup of GL,(Z). Then there exists
a positive integer q with the following property: whenever X is a nilpotent
subgroup of I such that UX = TI', where U is the maximal unipotent normal
subgroup of T,
7{X, X< q'Z" .

Of course we know that Z"(X, X, is an additive subgroup of Q"; the point
is that one has some control over how far away it can get from Z*. Another
way of putting the result is that there is a bound for the denominators in
the entries of matrices in X,.
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We start with some preparations.

LEMMA 1. Suppose X is a nilpotent subgroup o f GL, (k) such that X' is
unipotent. Then X, is abelian.

Proof. The map z+ x, is a homomorphism of X onto X,, so (X,) =
(X", = L.

DEFINITION. Suppose k is an algebraic mumber field with ring of

integers o, and x € GL,(0). Let \,, - - -, \, be the distinct eigenvalues o f x, and
assume that they lie in 0. Define the positive integer m(x) by
m(x)Z =ZNII..;,(» —r) 0.

LEMMA 2. If o and x are as above, then x, stabilizes an o-module L with
o"C LC m(x) o™ .

Proof. Put V =k™and E = o*. Then V is the direct sum of generalized
eigenspaces for «:

V=e.YV., Vix —A)i=0 for 1<i<r
with 1 <, < n for each i. Put L, = EN V, and
L =m(x)"@i-. L, .

Then L & m(x)™'o"; since z, acts as the scalar A, on V,, and ), is a unit of
o, x, stabilizes each L,; so x, stabilizes L. It remains toshow that L Do* = E.
Suppose

a=v+ -+ +v,ek, v, €V, foreach 7.
For a fixed 1,

aHi#i(x — )= viHj;ti()"i =Nyl

By the definition of m(x), there exists p, € o with p, IL,.. v — )Y = m(z),
and then

m(x)v, = pa],, (@ —N)ieE.
Thus m(x)v,e EN V, = L, for each 1, so m(zx)ac @ L, and ac L.
LEMMA 3. Let X be a nilpotent subgroup of GL,(0) such that X' is

unipotent, aﬂd choose x,, - --, x, € X such that (x,),, ---, (x,), generate X,.
Assume that the eigenvalues of x,, - - -, x, lie in o, and put

m = [T m=,) .
Then

(X, Xy &m™M,(0) .
Proof. Put E = 0. Lemma 2 shows that
E{(x),y Cc m(x;)"'E for eachs .
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As X, = {(x)),, -, (x,),y is abelian by Lemma 1, it follows that
EX.cmE.
Now (X,, X,> = XX, and X, centralizes X,, so
E{X, X,) =EXX,=EX,Cm'E .
The result follows.

Proof of Proposition 1. T is a soluble subgroup of GL,(Z), so by
Mal’cev’s Theorem ([Wel], 3.6) there exist an algebraic number field k, a
matrix a € GL,(k), and a positive integer e such that

Ty <Tr(n, k).

Take 0 = ¢ € Z such that ca and ca™ are in M,(0); there exists f = 0 such
that

V<IN (1 + M, (2),

and then it is easy to see that
(I < Tr(m, o) .
Put U= UNT’. Then UX =T implies UX’ = I/, so
(1) U (X/)y = @) .
Let d: Tr(n, k) — D,(k) be the map sending each matrix to its diagonal.
Since U~ < Tr,(n, k), any X satisfying (1) also satisfies
(X)) = d((I')") = D, say.

Now z+—d(x) maps (X/); isomorphically onto D, since for an upper-
triangular matrix x we have d(x,) = d(x); and the map preserves eigenvalues.
Hence if we choose a generating set y,, - - -, y, for D and put m = [[m(y.),
we may apply Lemma 3 to the nilpotent group (X”/)* and obtain

UXN), (X)) S m™ M, (o) .
Therefore
(X!, X< e?m™ M, (0) N GL,(Q) = ¢*m ™ M,(Z) .
Let x ¢ X. Then (z,)) = (&), ec*m* M,(Z), so
(n — D! flogz, = (n — 1)! log (x.) € (c*m™)" "' M,(Z)
and so
x, = explogx, cq ' M,(Z)
where
g = (n— DI ((n — DL i)t
Thus
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X.Sq¢'M,(Z) and
X, X)) =X, X< q'M,(2)GL,(Z) = q¢'M,(Z) .
The result follows.

We turn now to the second topic of this section. Let § < GL, be a
Q-group, and recall (§2) that we write

g = 11,92, .
For x = (x,) € 9, we define x, to be the element of §° with p-coordinate

(x,), for each prime p, provided that (x,), € S(Z,) for each p; otherwise =, is
undefined. =z, is defined likewise, so that we have

T2, = XX, =X .
As usual, we then define

X, ={x,|lveX}, X, ={x.|recX)

for any subgroup X < ¢ such that x, is defined for all x ¢ X.
If X < $(Z), denote by X the closure of X in the congruence topology
on $=. (Thus if X € ¥, 2.6 shows that X = X.)

PROPOSITION 2. Let X be a nilpotent subgroup of S(Z) such that X' is
unipotent and X, < G(Z). Then

(X), = (X,)”
(which means in particular that (X), is defined).

The proof is based on two lemmas. From now on X is supposed to be
a group satisfying the hypotheses of Proposition 2.

LEMMA 4. If (x(1))is a Cauchy sequence in X relative to the congruence
topology, then the sequence (x(1),) is also Cauchy and lim (x(¢),) = (lim (x(2))),.

Proof. By Lemma 1, X, is abelian. So there exist a number field k£ and
a matrix a € GL, (k) such that X is diagonal. As X7 centralizes X7 and is
unipotent, it is easy to see that there exists g € GL,(k) centralizing X such
that X is upper unitriangular. Then for x € X we have

(x*?), = d(x**)
where y — d(y) is the map sending a matrix to its diagonal. Now if (x(7))
is a Cauchy sequence relative to the congruence topology in M,(Z), then
(x(2)*#) is a Cauchy sequence relative to the congruence topology in M, (o),

where o denotes the ring of integers of k; hence so is the sequence (d(x(i)"‘ﬂ)).
It follows that

(@(),) = (=@ )
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is a Cauchy sequence relative to the congruence topology in M,(0). As each
x2(1), € M (Z), the first claim follows.

Now put £ = lim(2(?)), § = lim(«(¢),) € §°. Then
g~ = lim(«(7),) is unipotent,
and Z clearly commutes with . So to show that § = Z,, it only remains to
check that for each prime p, the p-component 4, of § is diagonalizable (over

some extension field of Q,). But this is clear since % is easily seen to be
diagonal.

LEMMA 5. Let (x(i)) be a sequence in X such that (2(3),) is a Cauchy
sequence relative to the congruence topology. Then there exists a Cauchy
sequence (y(1)) in X such that lim (y(¢),) = lim (2(3),).

Proof. We may assume that 2(¢ + 1), = 2(¢), mod 1! for each 7. For each
1 there exists a; > 0 such that X2 = 1mod¢!. Conversely, the congruence
topology induces the profinite topology on X, (see 2.4) so for each 7 there
exists b, > 0 such that

z€X, 2z, =1modb,! =— z,€ Xu"™ |
We can choose the numbers b, so that
b,,,>b,=1 for alli.
Now for each j put
2(3) = x(byz(b;)™" .
Then 2(j), = 1 mod 5!, and for 5 = 7 we have
2(1), € XaHm .

Now the map z + z, is a homomorphism of X onto X,, with kernel K, say.
Hence

2(1) = e(i)g(e) ™™
with ¢(?) € K and ¢g(1) € X. Writing g(1), = 1 + v where v = 0 and expanding
1 + v)='* by the binomial theorem, we obtain
g(1)g*™ = 1mod 1! .
Also g(1)"™ = 1modi! by the choice of a;;
thus g(2)**" = 1mod ! and so
2(t1) = ¢(t)mod 1! .
Now define

y(1) = c(1)e(2) - - - e — D)x(d,) .
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As the ¢(j) are in K, we get y(i), = 2(b,), for each i, so certainly
lim (y(4),) = lim(2(3),) .
Now
c(1) = 2(7) = x(b)w(b,+,) ' mod ¢! ,
therefore
Y@ + 1) =) - - - e(i — 1e(@)x(b,+,)
¢(1) - -+ e(i — 1)x(b;) mod 3!
=y@) .

Thus (y(i)) is a Cauchy sequence in X and the lemma is proved.

Proof of Proposition 2. If % € X then % is the limit of a Cauchy sequence
(x(?)) in X. By Lemma 4,

z, = lim(z(2),) e (X,)” .

Conversely, suppose ge(X,)". Then § is the limit of a Cauchy sequence
(x(7),) in X,. By Lemma 5 there exists a Cauchy sequence (¥(?)) in X such
that g = lim(y(¢),). Putting § = lim(y(1)) € X, we have by Lemma 4 that
Y, = §. Thus §e(X),. The proof is complete.

7. Semisimple splitting

Suppose G is a polycyelic group with a normal ¥ subgroup N such that
G/N is free abelian. Then G can be embedded in a split extension of a T
group by a finitely generated abelian group. This is the main point of
semisimple splitting, and forms the basis for example (together with Lemma
3.1) of L. Auslander’s proof (see [A], Chapter IV) that G can be embedded
in some GL,(Z). Thus the bare existence of the splitting is of some interest;
to prove it one needs only part (1) of Proposition 5.1, which in turn can be
proved more simply than we did in Section 5.

In what follows we make some notational conventions. If N is a normal
< subgroup of a group G, we denote by

Inng|y, Inng|,e

the automorphisms of N and of N© respectively induced by conjugation by
g, for each g € G. Also we identify N? with its Lie algebra, so that

(Inn g|,e),

has a meaning, and is considered as an automorphism of N<©. Analogous
conventions apply to subgroups of G.
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PROPOSITION 1. Let G P and let N be a T subgroup of G containing
G'. Let C be a nilpotent supplement for N in G and put

X =InnC|ye £ Aut N?.
Then the following hold:

1) X, < Aut N? is abelian.

2) There exists e > 0, depending only on N and on InnGlye, and a
lattice nilpotent group N, with N < N < N'*, such that G normalizes N and
X, stabilizes N. Now write G = NG.

3) There is an injective homomorphism tv: X, — Aut G given by

(te)* = p*-¢c, peN,ceC,ze X, .

Now put T = X,r < AutG.

4) Let M = Fitt(G]T). Then G]T = M]T. Also T acts faithfully on
M, and if G/N is torsion-free then M e Z.

5) If D is any nilpotent subgroup of G with DNG =C then T
centralizes D and

(Inn D|ye), = X, .
Proof. Write
gy = Inng|ye,

and put ' =Gy. Then X = Cy <T and I''< Ny which is unipotent.
Therefore X, is abelian by Lemma 6.1. Also X - Ny =T, so by Proposition
6.1 there exists a positive integer ¢, depending only on N and I', such that

IL(X, X)>Zq 'L
where L is the lattice in (the Lie algebra) N? generated by N. Then
N Ly s<{Ly*'» ={q'L)y = N/

for some f depending only on N and ¢ (where (L) denotes the subgroup of
N© generated by L, etc.). Let N be the lattice hull of (L)**». Then N is
stabilized by X, and X, hence N is normalized by G = NC. Moreover,

N§ N § Nve

where e, depending only on N and f, is chosen so that N'* contains the
lattice hull of N/,

We have now proved parts (1) and (2). For part (3), we will show that
7 as described is a well defined map; the other properties of z can then be
trivially verified. Thus we have to show only that X, acts trivially on N NC.
As C is nilpotent, inner automorphisms of C act unipotently on NN C. But
X, is a diagonalizable subgroup of Aut N, hence it acts trivially on N N C.
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Now we prove (4). For ceC, define
ule) = ¢ ((ey), 7)€ GIT .

Since (by definition) T centralizes C, this map u is an isomorphism of C onto
a subgroup u(C) of G]T. Now put

M=N. -uC).
From the definition of %(C) we have

MT = Nu(C)T = NCT = NGT =GT .

For ¢ e C, the automorphism of N induced by conjugating with u(c) is the
same as (cy),, so the group u(C) acts unipotently on N. Thus M is nilpotent.
By definition, T acts faithfully as a diagonalizable group of automorphisms

of N; as M acts unipotently on N it follows that M N T =1. As T centralizes
C and is abelian, we have

(GTY =(NCTY<NC'=N<M.
So M is normal in GT, and it follows that M = Fitt(GT) since no element of
T acts unipotently on N.

It remains to show that Me X if G/N is torsion-free. Now a trivial
check shows that

M/N =C/(Cn N)= NCIN = NG/N =GN .
As N e T the result follows.
For (5), suppose D < G is nilpotent and DG =C. Then D =(DNN)C.
As D is nilpotent the map ¥+ y, is a homomorphism of Dy onto (Dy),; so

(D¥), = (DN NW)(Cy), = (Cy), = X,

To see that T centralizes D, note that T acts by conjugation as (Dv),

does on D N N, hence trivially, since Dy acts unipotently on DN N. As T
also centralizes C the claim follows.

8. Strategy of the proof

Having made all the preparations we may now embark on the proof of
the Theorem. From now on, we let C denote a set of BF groups contained
in a single “-class; the aim is to prove that C is contained in the union of
finitely many isomorphism classes. This will be done in six steps which we

describe below. Several of these involve a reduction of one of the following
types:

Reduction of type 1. Divide C into finitely many subsets and restrict
attention to one of them, which is renamed €.
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Reduction of type 2. Replace each group G eC by G* for some fixed
positive integer k, and rename the resulting set C.

Reduction of type 3. Assuming that the groups N, = Fitt(G) are all
tsomorphic and in T, replace each G € € by N,G, where N, is a subgroup of
Ng normalized by G and satisfying N, < N, < N.\'* for some fized positive
integer k; rename the resulting set C.

These reductions are justified in Section 9. The steps of the proof are
as follows:

Step A. We may assume that for each G € C,
N, = ,4Fitt(G) e Z
and G/N is free abelian.

Step B. We may assume that the groups N, for Ge(C are lattice
nilpotent and are all tsomorphic.

Step C. Write Z, = {(N,;). We may assume that for each G and He €
there exist isomorphisms
Oou: No— Ny, Yo' G|Z,— H|Z,

such that the diagram

GlZ, ~" H|Z,

L

Aut N, — Aut N,

/}’ill
commutes, where 0%, is the isomorphism induced by 0,., and the vertical
maps are the canonical ones coming from inner automorphisms; and for
G, H, K € C we also have
Ock = Ocrbur » Yok = Veuvuw -

Step D. Write Q, = L(G). We may assume that for each G, H € C there

exists an isomorphism
0.::Gl|Q, — HIQ,

such that

Oy, = the isomorphism induced by 6,, from N,./Q; - N,/Q,.
(Note that it follows from Step C that Q.0., = Q,.) For G, H, K€€ we

also have 0, = 04,0 k.

Step D concludes what might be called the first leg of the proof. Indeed,
if the original set ¢ consisted of groups G such that every subgroup of
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finite index in G has trivial centre, the proof would be finished at this point.
In the general case, we have at least reduced to the situation where the
groups N, the groups G/Z,;, and the groups G/Q; can be identified, in a
compatible way, for all G € ¢. With this information we can embark on the
second leg of the proof.

ZG QG

1

Step E. We may assume that for each G € C there exists a finitely
generated abelian subgroup T, < Aut G such that the following hold:

1) GIT,=M,|T,. where M,, = Fitt (G |T,); M. e T and T, acts faithfully
on M,.

2) For each G, He € there exists an isomorphism

ton: G — H
such that
Tty = T
where (k. Aut G > Aut H is induced by .

This is the trickiest step, and uses all of Sections 4-7. However, the
idea is fairly simple: after adjusting G/Q. suitably, we choose a canonical
nilpotent supplement C./Q, for N./Q. in G/Q,, using Proposition 5.1; the
isomorphism o;,:G/Q. > H/Q, given by Step D enables us to choose the
groups C;/Q; uniformly for all G € ¢, i.e., so that (C,;/Q;)0.; = C,/Qy for all
G, He C. Then C; is a nilpotent supplement for N, in G and we use it to
define T, < AutG as in Proposition 7.1. Property (2) of the groups T, can
then be obtained with the help of part (2) of Proposition 5.1.

Step F. For each G € € define
)8;1,;: G ]Tr,' =M, lTr: I— GLn(Z)

as im Lemma 3.1, by identifying V(M,) with Z" for some n. Then m 1is
independent of G as G runs through ¢, and the images GB,, lie in a single
~ar,-class of GL,(Z).
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Conclusion. By Theorem D the groups Gg,, lie in finitely many con-
jugacy classes in GL,(Z). As 3, is injective, the groups G € C lie in finitely
many isomorphism classes.

9. Reduction steps

Here we justify the reduction steps described in Section 8. Reductions
of type 1 need no explanation. A reduction of type 2 is justified by Pro-
position 2.1 and Theorem A: if G = H then (G*)"~ = G* = H* = (H*)" so the
groups G* for G €C lie in a single “-class; on the other hand, we also have
H/H* = H/A* = G/G* = G/G*, so the index | H: H*| is constant and thus if
the groups H* lie in finitely many isomorphism classes, then so do the
groups H.

Type 3 reduction. We will only apply this in the situation where the
groups N; = Fitt(G) are all isomorphic and in £. We have a fixed positive
integer k and for each G € € a group N,, normalized by G, with N, < N, <
NJ*. Write G* = N,G and put

C* ={G*|GeC}.
We must establish

Claim 1. C* is contained in the union of finitely many ~-classes;
and

Claim 2. If C* is contained in the union of finitely many isomorphism
classes, then so s C.

Proof of Claim 2. Suppose G, HeC and G* = H*. Since
|H*. H| = [NI[: N, = IN;* Ny,

H is isomorphic to one of the finitely many subgroups of index at most
| NJ% N,|in G*. Since we are assuming that the groups N, for He(C are
all isomorphie, this index is independent of H and the claim follows.

Proof of Claim 1. Let G, H be in € and suppose 6: H G is an isomor-
phism. Then N,0 = N, by Theorem C, so 6 extends to an isomorphism
0*: (N} H — (N§*) G

(Lemma 2.10(c)). Now

H<(H* =N/ H
$0

G = Ho* < (H*)"0* < (NG .
But

|(N§*"G: G| = |(Ny*)": No| = | Ny Nl ,



POLYCYCLIC GROUPS 187

so there are only finitely many subgroups of (N}*)"G containing G, hence
only finitely many possibilities for (H*)"#*. Thus there are only finitely
many possibilities for (H*)~ up to isomorphism.

10. Steps A and B

Step A. We may assume that for every G €C, N; € T and G/Ng; is free
abelian.

Proof. Choose G € C. There exists k, > 0 such that G* is torsion-free.
Choose a multiple &, of k, such that Fitt(G*:) has Hirsch number as large as
possible. There exists a multiple k of k, such that G* Fitt(G*)/Fitt(G*) is
free abelian. The choice of k, ensures that

Fitt (G*) = G* N Fitt(G*) ,
so we have Fitt(G*) e £ and G*/Fitt(G*) is free abelian. Now if H e € then
Theorem C shows that

(Fitt (H*)" = (Fitt(G*)
and

(H*/Fitt(H%)" = (G*/Fitt(G»)" .

It follows that Fitt(H*) is torsion-free and H*/Fitt(H*) is torsion-free
abelian. As H*ecP¥F we have Fitt (H*) €< and H*/Fitt(H*) free abelian.
Finally a type 2 reduction allows us to replace each He C by H* to finish
Step A.

Step B. We may assume that the groups N, for G €C are all isomor-
phic, and are lattice nilpotent.

Proof. Theorem C, Theorem B and a type 1 reduction allow us to
assume that the groups N, are all isomorphic. Write N, for the lattice hull
of N,. Then there exists k > 0 such that N, < N, < N//* for all G €, also
G normalizes N,, N, = Fitt(N,G), and N,G/N,; = G/N, is free abelian for
each G. We may thus replace each G € € by the group N,G, using a reduc-
tion of type 3, to finish Step B.

11. Step C

Here we show that we may assume the following: there exist compatible
famalies of isomorphisms
Ogu: Ng — N, (G, He ©),
and
veu:Gl|Z,— H|Z, (G, He )

such that the canonical diagrams
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G/Z, L HIZ,

l l

Aut N, — Aut N,

GH

commute.

(Here and henceforth, to save space we call a family of maps such as
(Ban)e,nee compatible if for all G, H, K € ¢, we have 0, = 05,0 ,x.)

Proof. Fix G €€ and put N = N,. By Step B, for each HeC there is
an isomorphism ¢,: N, — N, inducing say @%: Aut N,, — Aut N. Denote by
py: H— Aut N, the map given by taking inner automorphisms. As N is
assumed lattice nilpotent, we may identify Aut N with $(Z) where G is the
algebraic Q-group Aut (log N?); see Lemma 2.9. Now we make the following

Clatm: for each H e C,
Ho,9% ~3Go: m S(Z) .

Accepting the claim for now, we may deduce by Theorem D that the groups
Hp,®} lie in finitely many conjugacy classes in Aut N as H runs through €.
By a reduction of type 1, we may thus assume that the groups Hp,®} are
all conjugate (as we have subdivided ¢, the chosen group G may no longer
be in € now). Fix KeC; then for each H e C there exists a,, € Aut N such
that

(Houpi)"" = KoxPi .
Define 6,,, to be the composite isomorphism
Oux = PuttyPx': Ny — Ny,
and let 6} ,: Aut N,, —» Aut N, be the induced isomorphism. Then Hp,6%« =
Kpy; as Z, = Ker p,, and Z, = Ker p, we obtain an induced isomorphism
Vux: HlZy — K| Z
such that the following diagram commutes:

HIZ, 2% K7,

| l

Aut N, — Aut N, .
0%

11K
Finally, for any H,, H, € C put
01{11{2 = 01/,1\'07/;1{ ’ ’\f'fnluz = VIIIK’\;’/_/;K

to complete Step C.
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Proof of the claim. We are to show that

Hp, 9l ~3Go, in G(Z) .
Let »: H—> G be an isomorphism. Then N,A = N, by Theorem C; extending
®,, to an isomorphism &,,: N, — N,, we obtain

Y =@pi'rve Aut N = g .
To establish our claim it will suffice to show that

(Hou®h) w, = (GP)TT for all m = 0

where 7,,:9” — GL,(Z/mZ) denotes the canonical map. Fix m # 0. There
exist £ > 0 such that log (N*) < mlog N (see Lemma 2.8) and [ > 0 such that
G'N N < N*and H'N N, < N}. Then \ induces an isomorphism x: H/H" —
G/G' sending the image of N,/N/} onto that of N/N*; and @, induces
an isomorphism @,: N,/N}-— N/N*, which induces an isomorphism &}:
Aut(N,/Nj)— Aut(N/N*). By the choice of I, the composite map

On canon.

H—"5 Aut(N,) — Aut(N,/N})

factors through H/H', and an analogous statement holds for G. The situa-
tion is described by a commutative diagram of solid arrows:

H H/H'
|
Ou 1273 |
Aut N, Aut (N,/N§)
* 2 5% 2 \\1 b ZII
3 (%3 a* p)
; !
AutN : Aut (V/N¥) |
/ \ V
G G/G' .

If X*: Aut(N,/N/%) —> Aut(N/N*) is the map induced by the isomorphism
N,/N) — N/N* which X induces, then the dotted square also commutes.

Hence the image in Aut(N/N*) of Gp, is equal to

(H/HYp,N* = (Hpp)pht@h N
(where 7: Aut N — Aut(N/N*) denotes the canonical map), and this is equal
to the image in Aut(N/N*) of (Hp,®})'", because for a € Aut(N/N*),
apy N =y oy

where 7€ Aut(N/N*) is induced by v. Thus Gos; and (Hp,9%)" induce the
same group of automorphisms on N/N*. By the choice of k, it follows that
they have the same image under 7, which is what we had to show.
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12, Step D

Now Q; = {(G) £ N, for each Ge (. In this section we show that we
may assume that there exists a compatible family of isomorphisms 0gy:
G/Q; — H|Qy for G, He C, such that dgy restricts to the map induced by bsy
from Ng/Qs — Ny/Qp.

Fix GeC, put N = N;and @ = Q. Let

®: G/N — Out(N/Q) = Aut(N/Q)/Inn (N/Q)
be the map induced by taking inner automorphisms of G. Now for each
H € C there is an exact sequence

6(H):1— N/Q — I{/QH —_— G1/N———> 1

NH/QH H/NH

defined by specifying that the dotted triangles commute, where 6* is induced
by 04, v* is induced by vz}, and the other dotted arrows are the canonical
inclusion and projection maps. The relationship between 6;, and gy
established in Step C shows that the map from G/N into Out(N/Q) induced
by &(H) is equal to @. Thus in the terminology of Gruenberg [G], Chapter
5, the extensions &(H) for H € € all belong to the class

(¥a.a)
NQ, o/
With A for the centre of N/Q, Section 5.4 of [G] shows that the equivalence
classes of extensions in this class are in bijective correspondence with
H*G/N, A). Now from the definition of @ we have H(G/N, A) = 0, hence
by Robinson’s result, Lemma 4.1, the group H*G/N, A) is finite. Thus the
extensions &(H) lie in finitely many equivalence classes.

After a type 1 reduction, we may assume that the extensions &(H) for
H e € are all equivalent (as usual, though, the group G may no longer be in
¢). Fix Ke . Then for each H ¢ ¢ there exists an isomorphism o, making
the solid diagram below commute:

NulQu
/1 \\
NIQ HIQ,
N/Q E/QK

~ -

* Nul@x
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Filling in the dotted arrows shows that ¢, does indeed restrict to the map
induced by 8, = Oysbxs from N, /Q, to N./Q,. Finally, for H,, H, € C define

— -1
Oniy = On kO nyk

to complete Step D.

13. Step E

Fix G e ¢. We apply Proposition 5.1 to the group G/Q and its nilpotent
normal subgroup N/Q (where N = N;and Q = Q;). Thus there exists k > 0
such that the set C((N/Q)"*) of canonical nilpotent supplements for (N/Q)"*
in (N/Q)"*(G/Q) is nonempty. Putting Q* = NY* N @Q° we may identify
(N/Q)* with N'*/Q* and (N/Q)"*(G/Q) with (N"*G)/Q*. Having done so,
choose C/Q* e /C(NV¥/Q*). Then C is nilpotent, as Q* is the hypercentre of
NG, and NV*C = NV*G. Thus we may now apply Proposition 7.1 to the
group NY*G with its nilpotent normal subgroup N“* and nilpotent supple-
ment C. This gives the following: there exists ¢ > 0, depending only on
NY* and on Inn(NV*G)|ye, and a lattice nilpotent group N, normalized by
NY¥@G, such that

Nl/k é N é (Nl/k)l/e :

and there exists an abelian subgroup T; < Aut(NG) such that T, centralizes
C and acts like

(Inn C|ye),

on Nj; also (NG)|T, = M|T, where M = Fitt(NG)]T,) € Z.

Now put @ = NN Q9 and identify N/Q with a subgroup of (N/Q)?
containing (N/Q)"*. Part (3) of Proposition 5.1 then shows that there exists
D/Q € 9C(N/Q) such that D = (NN D)C and C = DN NY*G. Then by part
(5) of Proposition 7.1, T, centralizes D and acts like (Inn D|ye), on N.

Let He (. The isomorphism 6;,: N; — N, extends to an isomorphism
N -— N2 which sends @* to N/*N Q% = Q}, say. The isomorphism o,,:
G/Q — H/Q, extends to an isomorphism ¢,,: NV*G/Q* — N}/*H/Q}. Define
C, < Nij*H by

C}{/Q;‘; = (C/Q*)UGH .

Just as we did above for G, we can now find N, with NJ* < N,, < (N5
such that H normalizes N, and (InnC,, Iv9). stabilizes N,; the number e is
the same as before because the pairs (N'* Inn(N'“G)|ye) and (N}
Inn(N}/*H) |N<l;;) are isomorphic by the pair of maps (6;,, ¥¢.) (see Step C).
Now we want to ensure that 6;,, sends N to N,,. This may not be so in
general; however, there are only finitely many subgroups between N'* and
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(Nv¥V¢ hence only finitely many possibilities for N,6;% as H runs through
C. After a type 1 reduction we may thus assume that N,6;}; is constant as
H runs through C; noting that all the families of maps (6.4), (G¢u), (Yen) are
compatible, we may safely choose a new “reference group” G and assume
now that

N6, = N, forall He(C.

Put Q, = N, N Q%Y. Then Q6,, = Q, and o,, extends to an isomorphism
NG/Q — N,H/Q,. Define D, < N,H by

DII/QH = (D/Q)UGH .
Then we have D, = (N, N D,)C, and D, N N*H = C,. Define T, <
Aut(N,H) by applying Proposition 7.1 to N}/*H with its subgroups N3* and
C,,. Then part (5) of that proposition shows that T, centralizes D, and acts
like (Inn D, [y9). on N.

By a reduction of type 3 we may assume that the groups N, H lie in a
single “-class; again we may have to choose a new “reference group” for
G, but this is allowed since all the constructions so far are made in terms
of compatible families of maps (6;,), (04y). Thus if HeC we have an
isomorphism

r = Uy (N,H)" — (NG)" .
Then (N,)"tt = (N)" by Theorem C, and (Q,) st = (@)" by Lemma 2.12. So
there is an induced isomorphism

J75 (NIIH/QII)A — (NG/Q)A .
The isomorphism o,,:NG/Q — N,H/Q, induces an isomorphism

G = Gt (NG/Q)A — (NIIH/QII)A .
The composite map 67 is then an automorphism of (NG/Q)" fixing (N/Q)".
Now recall that
DJQ e X(N/Q) ;
hence by part (2) of Proposition 5.1, there are only finitely many possibilities
up to conjugacy in (NG)~ for
(D/Q)A 6011 /211

as H runs through €. As ¢, was an arbitrary isomorphism (N,H)"—(NG)",
we may adjust y, for each He C by tacking on a suitable inner automor-
phism of (NG)", so that as H runs through € only finitely many distinct
groups (D/Q)" 6,1, occur. Recalling the definition of D,, we see that there
are only finitely many distinet groups ﬁ,,p,, as H runs through ¢. Now
making reductions of type 1 and 3 we may assume the following:
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For each HeC, Ny is lattice milpotent; there exists Dy, < H and
Ty < Aut H such that NyDy, = H, T, centralizes D,, and T, acts like
(Inn Dy [49), on Ny. Also

HI|T, = M,]T, where M, =Fitt(H|T,)eZT;
and Jfor each H, K €C there exists an isomorphism ftyy: H K such that
H#HK - D

(For pt,x we simply take p,ztx'.) To complete Step E we must show
that
(1) Tuﬂflk = TK
Jorall H,K € C, where tt}«: AutH— AutK is induced by tyx. Now K= NKﬁK
and it is easy to see that both members of (1) centralize Dy, so it will suffice
to show that the restriction of (1) to Aut Ny is valid. As Ny, Ni are lattice

nilpotent we can identify Aut N, with §5 and Aut N, with S where G, =
Aut(log NJ) and $x = Aut(log N?), and we have an isomorphism
M= e 95— 9% .
As ﬁHp,,K = ﬁK it follows that
(Inn Dyly,)" p* = (Inn D, ¢ )pe*
= Inn ﬁ,,p,m (%
= Inn Dy |3, = (Inn Dy |, )"
Now (Inn D, |y,)" is the congruence closure in $j; of Inn D, |, .» by Corollary
2.6; hence by Proposition 6.2 we have
Tult, = (Inn Dy ly,))" = (Ann Dy )7, -
Similarly
Tels, = ((Inn Dgly,)), -
Therefore
(T 15, = (Tule )" = Telsy
as it is clear from the definition that s¢* respects the Jordan decomposition.
Thus (1) is established and Step E is complete.

14. Step F

Fix G € C. For each H e ¢ there is an isomorphism g,,;: H > G such that
the induced map ¢}.;: Aut H > Aut G sends T, to T,. Then e extends to
an isomorphism

Nt (H|Ty)” — (G| Te)”

By Theorem C, M\, = M,, and by construction Ax,; = G and Tyh,e = T;.
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Hence we may apply Lemmas 3.3 and 3.4 to deduce that there exists an
isomorphism 7,,: V(M) — V(M) and that

HBy,Ths ~ GBy, in AutV(M,)

where 7}, Aut V(M,) — Aut V(M,) is induced by 7,,. So if we fix a Z-basis
in V(M,) and choose as Z-basis in V(M,,) the image of it under 73, we then
have

HBM}{ ~ GBM{} in GLn(Z) .

This holds for each He(C, so the groups Hp, , lie in a single ~-class of
GL.(Z).
This concludes the proof.
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