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CYCLIC SUBGROUP SEPARABILITY OF HNN EXTENSIONS

GOANSU KiM

1. Introduction

A group G is said to becyclic subgroup separabler.) if, for each cyclic
subgroup(x) of G, and for each elemerg € G\(x), there existN <1 G
such thag € N(x).

In [4], Baumslag and Tretkoff proved a residual finiteness criterion for
HNN extensions (Theorem 1.2, below). This result has been used extensively
in the study of the residual finiteness of HNN extensions. Note that every
one-relator group can be embedded in a one-relator group whose relator has
zero exponent sum on a generator, and the latter group can be considered
as an HNN extension. Hence the properties of an HNN extension play an
important role in the study of one-relator groups [3], [2]. In this paper we
prove a criterion for HNN extensions to bg (Theorem 2.2). Moreover, we
can prove that certain one-relator groups, known to be residually finite, are
actuallyre.

It was known by Mostowski [10] that the word problem is solvable for
finitely presented, residually finite groups. In the same way, the power problem
is solvable for finitely presented. groups. Another application of subgroup
separability with respect to special subgroups was mentioned by Thurston [12,
Problem 15].

We shall adopt the following notations and terminology:

We useN <i; G to denote thaiN is a normal subgroup of finite index
in G. “f.g." means “finitely generated". I is a homomorphic image
of G, then we usex to denote the image ot € G in G. We denote
by (A, t; t~tht = hg, h € H) an HNN extension of a base grouy with
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stable lettett, and associated subgroupsand K, wheregy : H — K is an
iIsomorphism.

Let H be a subgroup of a group. ThenG is said to beH -separablef, for
eachx € G\H, there existdN <1t Gsuchthak ¢ NH. If Gis(1)-separable,
then we say thas is residually finite(RF). A groupG is said to besubgroup
separablaef G is H-separable for all f.g. subgroups$ of G.

For example, it is not difficult to see that a finite extension of a free group
is subgroup separable, since a free group is subgroup separable [5]. Hence,
we derive the following result:

THEOREM1.1. [11]LetG = (A, t;t~tht = hg, h € H) be an HNN ex-
tension and assume thatis a finite group. Thefs is a finite extension of a
free group, and so, in particulds, is subgroup separable.

Next result is equivalent to Baumslag and Tretkoff’s criterion [11].

THEOREM1.2. [4] LetG = (A, t; t~tht = hg, h € H) be an HNN ex-
tension. LetA = {S<1s A: (SN H)p = SN K}. Assume that

(@ NscaHS=H andNsaKS=K,

(B) NscaS=(1).
ThenG isRF.

Let G and A be as in Theorem 1.2. Then, for eaBhe A, we have a
homomorphism

(1) ¢s: G — (A/S ts; ts*hts=hg, h e H),

where A = A/S, t¢s = ts andg : HS/S— K S/S is an isomorphism
induced byp.

THEOREM1.3. [11]LetG andA be as in Theorem 1.2. Théhis RF if
and only ifNscp Kergs = (1).

2. On HNN extensions

We recall some basic facts for HNN extensions, which may be found in [9]
or [8].
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REMARK 2.1. LetG = (A, t;t~tht = hp, h € H) be an HNN extension.

(1) Each elementy € G may be written in areduced form g =
aptragte - - - a,_it7a,, wherea € A, ¢ = +1, and no subwords tht
(h € H) ortkt™t (k € K) occur.

(2) Letg = apt*---t"a, be a reduced form as above. Then we define the
lengthof g, written||g||, as the numban of occurrences df andt= in g.

(3) Anelementy = apt - - - a,_1t“" is said to beyclically reducedf all cyclic
permutationsg; _1ta; - - -an_1t" - aptta; - - - @ _ot-t, of g are reduced.
Clearly, every element @& is conjugate to a cyclically reduced form.

Now we are ready to prove our main theorem of this paper.

THEOREM2.2. LetG = (A, t;t~tht = hg, h € H) bean HNN extension.
LetA ={P <t A: (PN H)p =PnNK}. Assume that

(@) NpeaHP = H andNpcAKP =K,

(b) NpcaP(X) = (x) forallx € A.
ThenG is m.

Proof. Let g, x be reduced forms s such thatg ¢ (x). Since every
element inG is conjugate to a cyclically reduced form, we may assume that
X is cyclically reduced. Moreover, sin€g is RF by Theorem 1.2, we may
assumex # 1.

Case 1. Supposeg (x) is implied by the syllable length of g and thiat
IS,

subcase 1|x|| = 0and ||g| > 1,

subcase 2||x|| > 1 and ||g| = O,

subcase 3|x|| > 1, ||g]| # 0 and ||x|| does not divide|g||.
For these subcases, we can fide A such thatg is reduced,|g|=]gll,
T # 1, and thak is cyclically reduced|X||=[x|, X # 1, whereG = G¢g =
(A/S ts; ts*hts=hg, h e H) is as in (1, p.2). It follows thag & (X).
SinceG is ¢ by Theorem 1.1, there existé <1 G such thag ¢ N(X). Let
N be the preimage dfl in G. Theng & N(x) andN <; G, as required.

Case 2.||x]| = 0= ||g|l. Then, by assumptiofb), there exist$ € A such
thatg ¢ S(x). Considerings = Ge¢s as before, we havg ¢ (X), and hence,
we can findN < G such thag ¢ N(x), as required.

Case 3. x| = 1, |lgll # 0 and | x| divides|g|. Sincex is cyclically
reduced, we may assume that agt’*a t® - - - a,_1t’, whereay € A, n > 1,
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andgj1 = 1. Let||g|l = m = nsand letg = bot*bst - - - by_1t“"by, be
reduced, wherd;, € A ande¢; = +1. By (a), we can findS, € A such that
a ¢ SHifg ¢ H,ora ¢ SK if g ¢ K, for eachi. Similarly, we can
find S € A suchthab; ¢ SHif by ¢ H, orby ¢ SK if bj ¢ K, for each
j. Now, sinceg™xs # 1 # gx® and sinceG is RF (by Theorem 1.2), there
existsM < G such thalg~'x5 ¢ M andgx® ¢ M. ThenM N A € A and
P=SNSNMNA) e A. SinceP Cc § NS, gisreduced an& is
cyclically reduced, wher& = G¢p. Moreover, we havég| = ||g]l = m =
ns = ||x3|| = ||X®|| andg # X=°, whereG = Gg¢p. It follows thatg ¢ (X).
Then, as in Case 1, we can fibh<i; G such thag ¢ N(x). This completes
the proof.

COROLLARY 2.3. Suppose thatl andK are finite and tha# is .. Then
the HNN extensios = (A, t; t™tht = hgp, h e H) ism..

Proof. To apply Theorem 2.2, we prov@) and (b) in the theorem. To
prove(a), leta € A\H. SinceA is RF andH, K are finite, there exists
P <+ AsuchthaHan P=¢gandPNH =1=PnNK. ThenP € A and
a ¢ HP. This proves thahipcaHP = H. Similarly,NpcaKP = K.

To prove(b), leta, x € A be such thaa ¢ (x). SinceH andK are finite
andAis ., there exist®® < Asuchthad ¢ P(x)andPNH =1= PnNK,
henceP € A. This provegb). ThereforeG is . by Theorem 2.2.

COROLLARY 2.4. If ¢ : A— Ais an automorphism ané is f.g., =¢, and
H-separable, theG = (A, t;t~tht = hg, h € H) is ..

Proof. To apply Theorem 2.2, we check conditioe and (b) in the
theorem.

To prove(a), leta € A\H. SinceA is H-separable, there exisk$ <i; A
such thaia ¢ HN. Now A is f.g. It follows that there exists a characteristic
subgroupP of A such thatP ¢ N andP < A. Hencea ¢ HP. SinceP is
characteristic ilA, we haveP¢y = P. Thus(P N H)p = P N K. It follows
thatP € A anda ¢ HP, proving(a).

To prove(b), leta, x € Abe such thah ¢ (x). SinceA s n¢, there exists
N <+ Asuchthat ¢ N(x). As before we can find a characteristic subgroup
P of Asuchthatt ¢ N andP <; A. ThenP € A anda ¢ P(x) as before.
This provegb). HenceG is . by Theorem 2.2.
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COROLLARY 2.5. Lety : A — A be an inner automorphism and suppose
that A is . andH -separable. ThefA, t;t~tht = hg, h € H) is ..

Proof. We note thatN N H)p = NN K foreachN <z A. Thus,N € A,
if N <t A. Now, the proof is similar to that of the above corollary.

In the above corollaries{ -separability is necessary in the following sense
(see [11, Theorem 1]):

COROLLARY 2.6. Let Aber.. Thenthe HNN extensio® = (A, t;t"tht =h, h e H)|j
is ¢ if, and only if, A is H-separable.

For the rest of this section, we recall the homomorphigngiven by (1,
p.2). We extend Theorem 1.3.

THEOREMZ2.7. LetG andA be asin Theorem 2.2. Foragivenf.g. subgroup
L of G, G is L-separable if, and only if)sca (Ker ¢ps)L = L.

Proof. (<) Letg ¢ L, whereg € G. Then, by assumption, there exists
P € A such thaty ¢ (Ker ¢p)L. Thusggp & Lopp andLep is f.g. Since
Gop is subgroup separable by Theorem 1.1, there eXsts; G¢p such
thatggp ¢ N(L¢p). Let N be the preimage ol in G. ThenN <i; G and
g € NL, as required.

(=) Assume thatG is L-separable and thag ¢ L. Then there ex-
ists N <t G such thatg ¢ NL. Let P = NN A ThenP <; A and
(PN H)y = PNnK, sinceN < G. Thus, Ker¢gp C N, and hence,
g ¢ (Ker ¢p)L. This proves thatns.a(Ker ¢s)L C L. Hence,
OSGA(Kerqu)L =L.

COROLLARY 2.8. LetG andA be as in Theorem 2.2. Thé&his r. if, and
only if, Nsea (Ker ¢s)(g) = (g) forallg € G.

COROLLARY 2.9. LetG andA be asin Theorem 2.2 Assumethat \HS =Jj
H and NsaKS = K. Then G is n. if, and only If,
Nsea (Ker ¢g)(X) = (x) forall x € A.

Proof. This follows directly from Theorem 2.2 and Corollary 2.8.

Finally we note that Larsen [7] showed that HNN extensions of f.g. free
groups with cyclic associated subgroups have solvable power problem. A
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finitely presentedr; group has solvable power problem. But, as in [1], the
group(a, b; b~tab = a?) is not ..

3. One-relator groups

In [3], [2], Allenby and Tang proved that the one-relator groups in this
section are residually finite. Using our criterion, we prove that these groups
arern.. First we note the following results for the generalized free product of
groups.

THEOREM 3.1. [6] Let G = A xy B be a generalized free product of the
groups A and B, amalgamating the subgroupH, and let
A={P,Q:Pxs A Qs BandPNH = Qn H}. Assume that

D ﬂ(pr)eAPH =H andﬂ(p,Q)eAQH =H,
(2) Np,gyea P(X) = (X) andN(p )ea Q(Y) = (y) forallx € A,y € B.
ThenG is r..

A groupG is said to bex)-potentf, for each positive integar, there exists
N <t G such thatN x has order exactly in G/N. The following result is
analogous to Theorem A-T in [2].

COROLLARY 3.2. Let A andB bern. and letA be(c')-potent, for some in-
tegerf. Then the generalized free prodict ., B of A andB, amalgamating
(C), Isme.

Proof. To apply the above theorem, we prove the following facts:

1. For each N<i; A, there existgP, Q) € A such that PC N.

Let N N (c) = (cX). Sincec’ ¢ (c™), forall1 <i < fk, there exists
N; <1t Asuchthat' ¢ Ni(c&), foralli. ThusN; N (c) = (cfkt), for somet.
Similarly, there existl; <i; B suchthat! ¢ M;(c'k), forall1 < j < fkt.
ThusM; N (c) = (¢, for somem. SinceA is (c’)-potent, there exists
N, <1t AsuchthaN,nN(cf) = (¢, LetP = NN N;N Ny andQ = M;.
ThenP N (c) = (¢ = QN (c), and hence(P, Q) € A andP c N.

2. For each M« B, there exist$P, Q) € A such that Qc M.

Let M N (c) = (c). Let N3, Np, andM; be as above. TheR = Ny N N,
andQ = M N M satisfy our requirement.

Now it is not difficult to apply Theorem 3.1.
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The residual finiteness of the grou@sin the next two results was known
to Allenby and Tang [3]. Using Theorem 2.2, we prove that these groups are
actuallyre.

THEOREM 3.3. Let G = (a, b; (r(a, b))!), wheret > 1 andr (a, b) is a
cyclically reduced word oa andb, with b exponent sum equal to zero, that
is not a proper power. Regardifgas an HNN extension bipb) of the base
groupA = (a_, a 41, ... ,aw; F@&))"), wherea, = b~'abl, if we find that
botha, anday occur only once iim(a;), (whereL andM are respectively the
smallest and largest indices occurring (g;)), thenG is r.

Proof. Firstwe note that it = 1, thenG is a cyclic extension of af.g. free
group which isz; by [1]. As explained in [3],G has associated subgroups
H = (a_, A 41, .., am_1) andK = (a|_+1, e, am), Where<p 'H—= Kis
the isomorphism defined g ¢ = & ,1. In [3], we find the following facts,
fort > 2:

1. A has the propertya) in Theorem 2.2.
2. If P is a characteristic subgroup oA with finite index, then

(PNH)p=PnNK.

3. Ais subgroup separable.

Thus we need only showb) in Theorem 2.2. For this, leg, X € A be such
thatg & (x). SinceA is ¢, there existdN <1z A such thatg ¢ N(x). Note
that Ais f.g. Hence, we can find a characteristic subgréupf A with finite
index in A such thatP ¢ N. This provegb) by 2 above. Therefor& is n..

COROLLARY 3.4. The groupG = (a, b; [a, bk, ..., b)Y isn¢ fort > 1.

Proof. As explained in [3, Lemma 4.2], we note that p*, ... , b*] can
be expressed as a prodlagtlatzatgl -+, Whereg; = b~'ab’, and the 2
sufficest; are precisely the 2partial sums ofky, ... , k,}, each appearing

once. Hence, the corollary follows from Theorem 3.3.

Because of Corollary 3.2, and the similarity between Theorem 1.2 and
Theorem 2.2, with only minor change of the proofs in [3] and [2], we can
prove that the groups in the following theorems are still We denote by
u(b;) andv(by), words on the letterts;, for the following theorems.
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THEOREM 3.5. The groupG = (a, by, ..., b @ 'ub)av(by))) is 7.
fort > 2.

We note that the result fdr = 1 in the above theorem was claimed by
Shirvani (see footnote in [2]).

THEOREM 3.6. The group G = (C1,C,...,Cn, 01,0z, ..., dn;
[u(c), v(d)]®) ism¢ fors > 1.

THEOREM 3.7. The group G = (C1,C2,...,Cn, 01, 0o, ..., dn;
(u(c)*v(dj)P)®) is ¢ fors > 1 andap # 0.

THEOREM 3.8. The group G = (C1,C2,...,Cn, 01, 0o, ..., dn;

(uc)*v(dpPu(c)’v(d;)®)s) ismc fors > 1, if (u, v ; (U*vPurv®)s) is .

A word w is said to bepositive if only non-negative powers of the genera-
tors of the group occur iw.

THEOREM3.9. LetG = (g, h, ..., k; (uv™1)S), whereu andv are positive
words on the generatogsh, . . . , k and where each generator appeartsin'
with zero exponent sum. Then, for- 1, G is r.
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