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CYCLIC SUBGROUP SEPARABILITY OF HNN EXTENSIONS

GOANSU KIM

1. Introduction

A groupG is said to becyclic subgroup separable(πc) if, for each cyclic
subgroup〈x〉 of G, and for each elementg ∈ G\〈x〉, there existsN C f G
such thatg 6∈ N〈x〉.

In [4], Baumslag and Tretkoff proved a residual finiteness criterion for
HNN extensions (Theorem 1.2, below). This result has been used extensively
in the study of the residual finiteness of HNN extensions. Note that every
one-relator group can be embedded in a one-relator group whose relator has
zero exponent sum on a generator, and the latter group can be considered
as an HNN extension. Hence the properties of an HNN extension play an
important role in the study of one-relator groups [3], [2]. In this paper we
prove a criterion for HNN extensions to beπc (Theorem 2.2). Moreover, we
can prove that certain one-relator groups, known to be residually finite, are
actuallyπc.

It was known by Mostowski [10] that the word problem is solvable for
finitely presented, residually finite groups. In the same way, the power problem
is solvable for finitely presentedπc groups. Another application of subgroup
separability with respect to special subgroups was mentioned by Thurston [12,
Problem 15].

We shall adopt the following notations and terminology:
We useN C f G to denote thatN is a normal subgroup of finite index

in G. “f.g." means “finitely generated". IfG is a homomorphic image
of G, then we usex to denote the image ofx ∈ G in G. We denote
by 〈A, t ; t−1ht = hϕ, h ∈ H〉 an HNN extension of a base groupA, with
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stable lettert , and associated subgroupsH and K , whereϕ : H → K is an
isomorphism.

Let H be a subgroup of a groupG. ThenG is said to beH-separableif, for
eachx ∈ G\H , there existsN C f G such thatx 6∈ N H. If G is 〈1〉-separable,
then we say thatG is residually finite(RF ). A groupG is said to besubgroup
separableif G is H -separable for all f.g. subgroupsH of G.

For example, it is not difficult to see that a finite extension of a free group
is subgroup separable, since a free group is subgroup separable [5]. Hence,
we derive the following result:

THEOREM 1.1. [11]Let G = 〈A, t; t−1ht = hϕ, h ∈ H〉 be an HNN ex-
tension and assume thatA is a finite group. ThenG is a finite extension of a
free group, and so, in particular,G is subgroup separable.

Next result is equivalent to Baumslag and Tretkoff’s criterion [11].

THEOREM 1.2. [4] Let G = 〈A, t; t−1ht = hϕ, h ∈ H〉 be an HNN ex-
tension. Let1 = {SC f A : (S∩ H)ϕ = S∩ K }. Assume that
(a) ∩S∈1H S= H and∩S∈1K S= K ,
(b) ∩S∈1S= 〈1〉.

ThenG isRF .

Let G and1 be as in Theorem 1.2. Then, for eachS ∈ 1, we have a
homomorphism

(1) φS : G→ 〈A/S, tS; t−1
S htS= hϕ, h ∈ H〉,

where A = A/S, tφS = tS and ϕ : H S/S→ K S/S is an isomorphism
induced byϕ.

THEOREM1.3. [11]Let G and1 be as in Theorem 1.2. ThenG isRF if
and only if∩S∈1 Ker φS = 〈1〉.

2. On HNN extensions

We recall some basic facts for HNN extensions, which may be found in [9]
or [8].
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REMARK 2.1. Let G = 〈A, t; t−1ht = hϕ, h ∈ H〉 be an HNN extension.
(1) Each elementg ∈ G may be written in a reduced form g =

a0t ε1a1t ε2 · · ·an−1t εnan, whereai ∈ A, εi = ±1, and no subwordst−1ht
(h ∈ H) or tkt−1 (k ∈ K ) occur.

(2) Let g = a0t ε1 · · · t εnan be a reduced form as above. Then we define the
lengthof g, written‖g‖, as the numbern of occurrences oft andt−1 in g.

(3) An elementg = a0t ε1 · · ·an−1t εn is said to becyclically reducedif all cyclic
permutations,ai−1t εi ai · · ·an−1t εn · a0t ε1a1 · · ·ai−2t εi−1, of g are reduced.
Clearly, every element ofG is conjugate to a cyclically reduced form.

Now we are ready to prove our main theorem of this paper.

THEOREM2.2. LetG = 〈A, t; t−1ht = hϕ, h ∈ H〉be an HNN extension.
Let1 = {P C f A : (P ∩ H)ϕ = P ∩ K }. Assume that
(a) ∩P∈1H P = H and∩P∈1K P = K ,
(b) ∩P∈1P〈x〉 = 〈x〉 for all x ∈ A.

ThenG is πc.

Proof. Let g, x be reduced forms inG such thatg 6∈ 〈x〉. Since every
element inG is conjugate to a cyclically reduced form, we may assume that
x is cyclically reduced. Moreover, sinceG isRF by Theorem 1.2, we may
assumex 6= 1.

Case 1. Suppose g6∈ 〈x〉 is implied by the syllable length of g and x;that
is,

subcase 1‖x‖ = 0 and ‖g‖ ≥ 1,
subcase 2‖x‖ ≥ 1 and ‖g‖ = 0,
subcase 3‖x‖ ≥ 1, ‖g‖ 6= 0 and ‖x‖ does not divide‖g‖.

For these subcases, we can findS ∈ 1 such thatg is reduced,‖g‖=‖g‖,
g 6= 1, and thatx is cyclically reduced,‖x‖=‖x‖, x 6= 1, whereG = GφS =
〈A/S, tS; t−1

S htS = hϕ, h ∈ H 〉 is as in (1, p.2). It follows thatg 6∈ 〈x〉.
SinceG is πc by Theorem 1.1, there existsN C f G such thatg 6∈ N〈x〉. Let
N be the preimage ofN in G. Theng 6∈ N〈x〉 andN C f G, as required.

Case 2.‖x‖ = 0= ‖g‖. Then, by assumption(b), there existsS∈ 1 such
thatg 6∈ S〈x〉. ConsideringG = GφS as before, we haveg 6∈ 〈x〉, and hence,
we can findN C f G such thatg 6∈ N〈x〉, as required.

Case 3. ‖x‖ ≥ 1, ‖g‖ 6= 0 and ‖x‖ divides‖g‖. Sincex is cyclically
reduced, we may assume thatx = a0t δ1a1t δ2 · · ·an−1t δn, whereaj ∈ A, n ≥ 1,
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andδj+1 = ±1. Let ‖g‖ = m = ns and letg = b0t ε1b1t ε2 · · ·bm−1t εmbm be
reduced, wherebi ∈ A andεi = ±1. By (a), we can findS1 ∈ 1 such that
ai 6∈ S1H if ai 6∈ H , or ai 6∈ S1K if ai 6∈ K , for eachi . Similarly, we can
find S2 ∈ 1 such thatbj 6∈ S2H if bj 6∈ H , or bj 6∈ S2K if bj 6∈ K , for each
j . Now, sinceg−1xs 6= 1 6= gxs and sinceG isRF (by Theorem 1.2), there
existsM C f G such thatg−1xs 6∈ M andgxs 6∈ M. ThenM ∩ A ∈ 1 and
P = S1 ∩ S2 ∩ (M ∩ A) ∈ 1. SinceP ⊂ S1 ∩ S2, g is reduced andx is
cyclically reduced, whereG = GφP . Moreover, we have‖g‖ = ‖g‖ = m=
ns= ‖xs‖ = ‖xs‖ andg 6= x±s, whereG = GφP. It follows thatg 6∈ 〈x〉.
Then, as in Case 1, we can findN C f G such thatg 6∈ N〈x〉. This completes
the proof.

COROLLARY 2.3. Suppose thatH andK are finite and thatA is πc. Then
the HNN extensionG = 〈A, t; t−1ht = hϕ, h ∈ H〉 is πc.

Proof. To apply Theorem 2.2, we prove(a) and(b) in the theorem. To
prove (a), let a ∈ A\H . Since A is RF and H, K are finite, there exists
P C f A such thatHa ∩ P = ∅ andP ∩ H = 1= P ∩ K . ThenP ∈ 1 and
a 6∈ H P. This proves that∩P∈1H P = H . Similarly,∩P∈1K P = K .

To prove(b), let a, x ∈ A be such thata 6∈ 〈x〉. SinceH andK are finite
andA isπc, there existsP C f A such thata 6∈ P〈x〉 andP∩H = 1= P∩K ,
henceP ∈ 1. This proves(b). ThereforeG is πc by Theorem 2.2.

COROLLARY 2.4. If ϕ : A→ A is an automorphism andA is f.g.,πc, and
H -separable, thenG = 〈A, t; t−1ht = hϕ, h ∈ H〉 is πc.

Proof. To apply Theorem 2.2, we check conditions(a) and (b) in the
theorem.

To prove(a), let a ∈ A\H . SinceA is H -separable, there existsN C f A
such thata 6∈ H N. Now A is f.g. It follows that there exists a characteristic
subgroupP of A such thatP ⊂ N andP C f A. Hencea 6∈ H P. SinceP is
characteristic inA, we havePϕ = P. Thus(P ∩ H)ϕ = P ∩ K . It follows
that P ∈ 1 anda 6∈ H P, proving(a).

To prove(b), let a, x ∈ A be such thata 6∈ 〈x〉. SinceA is πc, there exists
N C f A such thata 6∈ N〈x〉. As before we can find a characteristic subgroup
P of A such thatP ⊂ N andP C f A. ThenP ∈ 1 anda 6∈ P〈x〉 as before.
This proves(b). HenceG is πc by Theorem 2.2.
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COROLLARY 2.5. Let ϕ : A→ A be an inner automorphism and suppose
that A is πc andH -separable. Then〈A, t; t−1ht = hϕ, h ∈ H〉 is πc.

Proof. We note that(N ∩ H)ϕ = N ∩ K for eachN C f A. Thus,N ∈ 1,
if N C f A. Now, the proof is similar to that of the above corollary.

In the above corollaries,H -separability is necessary in the following sense
(see [11, Theorem 1]):

COROLLARY 2.6. Let Abeπc. Then the HNN extensionG = 〈A, t; t−1ht = h, h ∈ H〉
is πc if, and only if, A is H -separable.

For the rest of this section, we recall the homomorphismφS given by (1,
p.2). We extend Theorem 1.3.

THEOREM2.7. LetG and1be as in Theorem 2.2. For a given f.g. subgroup
L of G, G is L-separable if, and only if,∩S∈1(Ker φS)L = L.

Proof. (⇐H) Let g 6∈ L, whereg ∈ G. Then, by assumption, there exists
P ∈ 1 such thatg 6∈ (Ker φP)L. ThusgφP 6∈ LφP and LφP is f.g. Since
GφP is subgroup separable by Theorem 1.1, there existsN C f GφP such
that gφP 6∈ N(LφP). Let N be the preimage ofN in G. ThenN C f G and
g 6∈ N L, as required.
(H⇒) Assume thatG is L-separable and thatg 6∈ L. Then there ex-

ists N C f G such thatg 6∈ N L. Let P = N ∩ A. Then P C f A and
(P ∩ H)ϕ = P ∩ K , since N C f G. Thus, KerφP ⊂ N, and hence,
g 6∈ (Ker φP)L. This proves that∩S∈1(Ker φS)L ⊂ L. Hence,
∩S∈1(Ker φS)L = L.

COROLLARY 2.8. Let G and1 be as in Theorem 2.2. ThenG is πc if, and
only if, ∩S∈1 (Ker φS)〈g〉 = 〈g〉 for all g ∈ G.

COROLLARY 2.9. LetG and1be as in Theorem 2.2 Assume that∩S∈1H S=
H and ∩S∈1K S = K . Then G is πc if, and only if,
∩S∈1 (Ker φS)〈x〉 = 〈x〉 for all x ∈ A.

Proof. This follows directly from Theorem 2.2 and Corollary 2.8.

Finally we note that Larsen [7] showed that HNN extensions of f.g. free
groups with cyclic associated subgroups have solvable power problem. A
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finitely presentedπc group has solvable power problem. But, as in [1], the
group〈a, b; b−1ab= a2〉 is notπc.

3. One-relator groups

In [3], [2], Allenby and Tang proved that the one-relator groups in this
section are residually finite. Using our criterion, we prove that these groups
areπc. First we note the following results for the generalized free product of
groups.

THEOREM 3.1. [6] Let G = A ∗H B be a generalized free product of the
groups A and B, amalgamating the subgroupH , and let
3 = {(P, Q) : P C f A, Q C f B andP ∩ H = Q ∩ H}. Assume that
(1) ∩(P,Q)∈3P H = H and∩(P,Q)∈3QH = H ,
(2) ∩(P,Q)∈3P〈x〉 = 〈x〉 and∩(P,Q)∈3Q〈y〉 = 〈y〉 for all x ∈ A, y ∈ B.
ThenG is πc.

A groupG is said to be〈x〉-potentif, for each positive integern, there exists
N C f G such thatN x has order exactlyn in G/N. The following result is
analogous to Theorem A-T in [2].

COROLLARY 3.2. Let A andB beπc and letA be〈c f 〉-potent, for some in-
teger f . Then the generalized free productA ∗〈c〉 B of A andB, amalgamating
〈c〉, isπc.

Proof. To apply the above theorem, we prove the following facts:
1. For each NC f A, there exists(P, Q) ∈ 3 such that P⊂ N.
Let N ∩ 〈c〉 = 〈ck〉. Sinceci 6∈ 〈c f k〉, for all 1 ≤ i < f k, there exists

N1 C f A such thatci 6∈ N1〈c f k〉, for all i . ThusN1∩〈c〉 = 〈c f kt〉, for somet .
Similarly, there existsM1 C f B such thatcj 6∈ M1〈c f kt〉, for all 1≤ j < f kt.
Thus M1 ∩ 〈c〉 = 〈c f ktm〉, for somem. SinceA is 〈c f 〉-potent, there exists
N2 C f A such thatN2∩ 〈c f 〉 = 〈c f ktm〉. Let P = N ∩ N1∩ N2 andQ = M1.
ThenP ∩ 〈c〉 = 〈c f ktm〉 = Q ∩ 〈c〉, and hence,(P, Q) ∈ 3 andP ⊂ N.

2. For each MC f B, there exists(P, Q) ∈ 3 such that Q⊂ M.
Let M ∩ 〈c〉 = 〈ck〉. Let N1, N2, andM1 be as above. ThenP = N1 ∩ N2

andQ = M ∩ M1 satisfy our requirement.
Now it is not difficult to apply Theorem 3.1.
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The residual finiteness of the groupsG in the next two results was known
to Allenby and Tang [3]. Using Theorem 2.2, we prove that these groups are
actuallyπc.

THEOREM 3.3. Let G = 〈a, b; (r (a, b))t〉, wheret ≥ 1 and r (a, b) is a
cyclically reduced word ona andb, with b exponent sum equal to zero, that
is not a proper power. RegardingG as an HNN extension by〈b〉 of the base
group A = 〈aL, aL+1, . . . , aM ; (r (ai ))

t 〉, whereai = b−i abi , if we find that
bothaL andaM occur only once inr (ai ), (whereL andM are respectively the
smallest and largest indices occurring inr (ai )), thenG is πc.

Proof. First we note that ift = 1, thenG is a cyclic extension of a f.g. free
group which isπc by [1]. As explained in [3],G has associated subgroups
H = 〈aL, aL+1, . . . , aM−1〉 andK = 〈aL+1, . . . , aM〉, whereϕ : H → K is
the isomorphism defined byaiϕ = ai+1. In [3], we find the following facts,
for t ≥ 2:
1. A has the property(a) in Theorem 2.2.
2. If P is a characteristic subgroup ofA with finite index, then
(P ∩ H)ϕ = P ∩ K .

3. A is subgroup separable.
Thus we need only show(b) in Theorem 2.2. For this, letg, x ∈ A be such
that g 6∈ 〈x〉. SinceA is πc, there existsN C f A such thatg 6∈ N〈x〉. Note
that A is f.g. Hence, we can find a characteristic subgroupP of A with finite
index in A such thatP ⊂ N. This proves(b) by 2 above. ThereforeG is πc.

COROLLARY 3.4. The groupG = 〈a, b; [a, bk1, . . . , bkn ]t 〉 is πc for t ≥ 1.

Proof. As explained in [3, Lemma 4.2], we note that [a, bk1, . . . , bkn ] can
be expressed as a producta−1

t1 at2a
−1
t3 · · ·at2n , whereai = b−i abi , and the 2n

sufficesti are precisely the 2n partial sums of{k1, . . . , kn}, each appearing
once. Hence, the corollary follows from Theorem 3.3.

Because of Corollary 3.2, and the similarity between Theorem 1.2 and
Theorem 2.2, with only minor change of the proofs in [3] and [2], we can
prove that the groups in the following theorems are stillπc. We denote by
u(bi ) andv(bi ), words on the lettersbi , for the following theorems.
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THEOREM 3.5. The groupG = 〈a, b1, . . . , bk; (a−l u(bi )alv(bi ))
t 〉 is πc

for t ≥ 2.

We note that the result forl = 1 in the above theorem was claimed by
Shirvani (see footnote in [2]).

THEOREM 3.6. The group G = 〈c1, c2, . . . , cm, d1, d2, . . . , dn;
[u(ci ), v(dj )]s〉 is πc for s ≥ 1.

THEOREM 3.7. The group G = 〈c1, c2, . . . , cm, d1, d2, . . . , dn;
(u(ci )

αv(dj )
β)s〉 is πc for s≥ 1 andαβ 6= 0.

THEOREM 3.8. The group G = 〈c1, c2, . . . , cm, d1, d2, . . . , dn;
(u(ci )

αv(dj )
βu(ci )

γ v(dj )
δ)s〉 is πc for s≥ 1, if 〈u, v ; (uαvβuγ vδ)s〉 is πc.

A wordw is said to bepositive, if only non-negative powers of the genera-
tors of the group occur inw.

THEOREM3.9. LetG = 〈g, h, . . . , k; (uv−1)s〉, whereu andv are positive
words on the generatorsg, h, . . . , k and where each generator appears inuv−1

with zero exponent sum. Then, fors ≥ 1, G is πc.
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