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Abstract

Using a probabilistic approach we establish new residual properties of the modulaRBBUf),
and of more general free products. We prove that the modular group is residually in any infinite
collection of finite simple groups not containing a Suzuki gr&afy) or a 4-dimensional symplectic
groupPSpy(g) with ¢ a power of 2 or 3. This result is best possible, since the groups excluded are
not quotients of the modular group. We also show that i§ a collection of classical groups of
unbounded rank, then an arbitrary free proddict B of nontrivial finite groups, not both 2-groups,
is residuallysS, and prove results about free produgts Z.
0 2003 Elsevier Inc. All rights reserved.

1. Introduction

A group G is said to be residually (in) a sef of groups if the kernels of all
epimorphisms fronG to members ofS intersect trivially. A well-known problem raised
by Magnus [10] and Gorchakov and Levchuk [5] asks whether a free group of finite rank
at least 2 is residually in any infinite collection of finite simple groups. Following partial
solutions in [10,16,29,30], this was answered completely in the affirmative by Weigel in
a series of papers [26—28]. Using a probabilistic approach, a short proof of this result is
givenin [4].
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In this paper we show that the probabilistic approach can be applied in the study of
residual properties of other classes of groups, and yields new results which were not
obtained by standard tools. Here we focus on free prodlctsA x B or A x Z, where
A, B are finite groups an@ denotes the integers. We are concerned with the analogue
of the Magnus problem for these groups: namely, for which collectioasfinite simple
groups isI” residuallyS? This is solved in [25] in the case wheSeonsists of alternating
groups, but all other cases have remained open until now.

Of particular interest is the free produC * C3 since this is isomorphic to the much
studied modular groupSly(Z); our first theorem gives a complete answer to the problem
in this case.

Theorem 1.1. Let S be an infinite collection of finite simple groups not containing R&p
(¢ a power of2 or 3) or SZg). Then PSk(Z) is residuallys.

Of course the Suzuki grougSZg) do not contain elements of order 3, so must be
excluded; thePSp, exceptions are also genuine, as these groups are not quotients of the
modular group by [13, Section 6].

For general free products of finite groups, we prove

Theorem 1.2. Let A, B be nontrivial finite groups, not bot@-groups, and letS be a
collection of finite simple classical groups of unbounded ranks. Then the free prbdui:t
is residuallys.

Our last theorem concerns free products of finite groups With
Theorem 1.3. Let S be an infinite collection of finite simple groups. Then

(i) C2x7Zisresiduallys;
(i) C3*ZisresiduallyS, providedsS does not contain $2);
(i) if A is any nontrivial finite group, and consists of classical groups of unbounded
ranks, themA * Z is residuallys.

Note that part (iii) of Theorem 1.3 follows from Theorem 1.2; however, we provide a
direct proof which requires fewer tools.

For simple groups of bounded rank such definitive results as Theorems 1.2 and 1.3(iii)
are not always possible, as, B may not be embeddable in such groups. Nevertheless
as a by-product of our methods we are able to prove the following partial result (see
Proposition 5.7): lepp be a fixed prime, le#A be a nontrivial subgroup d®Sly(p), and
let S be a collection of simple groups of Lie type of bounded rank in charactefistiot
containingS¢). Then the free product * Z is residuallys.

Let us briefly describe the general strategy of our proofs and the role of probabilistic
arguments. In order to show that a grofipis residuallyS it suffices to find, for each
1+ w e I', an epimorphismg from I" to some groufs € S satisfyingg (w) # 1. Consider
first Theorem 1.1. Lef”™ = C2 * C3, with canonical generators, y of orders 2 and 3
respectively, and write» = w(x, y). Then a homomorphisih from I" to G is determined
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by the values: := ¢ (x) andb := ¢ (y), whereqa, b € G satisfya? = b3 = 1. The condition

thatg is an epimorphism can be written @s b) = G, and the condition (w) # 1 amounts

to saying thatw(a, b) # 1. The idea is now to let be a randomly chosen involution @,

andb a randomly chosen element of order 3, and to show that each of these two conditions
holds with probability tending to 1 4€/| — oco; hence the two conditions can be satisfied
simultaneously for some group € S as required. For the generation conditians) = G,

we use random2, 3)-generation results from [13] and [8]. The main effort therefore
focuses on showing that, for random elements € G of orders 2 and 3 respectively,

the probability thatw(a, b) # 1 tends to 1 agG| — oco. For technical reasons we actually

fix particular large conjugacy classes of elements of orders 2 and73and choose, b

at random from these classes; this means that we require slight refinements of the random
generation results of [13]. We shall discuss below a little more our methods for proving the
last statement aboui(a, b).

For Theorem 1.2, in which” = A % B, we shall prove a randor¢A, B)-generation
result of independent interest (see Theorem 2.3 below). This result shows thaindB
are embedded in a natural fashion in classical graupsf sufficiently large dimension,
then randomly chosel-conjugates ofA and B generateG with probability tending
to 1 as|G| — oo. The proof of this theorem relies on the recent paper [15], dealing with
random generation of classical groups of large rank by elements of prime ordérnot
both 2).

The layout of the paper is as follows. In Section 2 we present the results on random
generation of simple groups which will be used in subsequent sections. Section 3 contains
the proof of Theorems 1.1-1.3 in the case where the collediconsists of classical
groupsG of unbounded dimensions. We study wordsw(T) € G *x (T) = G * Z, and
their behaviour when we substitute a random elementG for 7. The main result of
this section, Theorem 3.7, provides a criterion foi) to be nontrivial with probability
tending to 1 a1 — oo. This result, when combined with relevant results on random
generation in Section 2, yields Theorem 1.2 and the unbounded rank cases of Theorems 1.1
and 1.3.

Sections 4 and 5 are devoted to the proofs of Theorems 1.1 and 1.3 in the cas& where
consists of simple groups of bounded rank. We discuss Theorem 1.1 here. For the purpose
of proving this, we may assume that the groupsSimare of the formS(g) = (G(,q)’,
whereG = G(K ) is a simple adjoint algebraic group of fixed type over an algebraically
closed fieldK, of characteristigp, o, is a Frobenius morphisng, is a power ofp, and
q — oo (also p may vary). Our generation results in Section 2 show that if € S(g)
have orders 2, 3 respectively, and are such thatadirdims® are maximal, ther§(q)
is generated by randomly chosen elements from the clas$€s»%@ with probability
tending to 1 ag — oo. We prove in Theorem 4.1 th&t possesses a subgroBfla(K )
containing such elements ». We further show that, provide&i,, is the algebraic closure
of a local field, thisPSL>(K,) contains the free produdi, « C3 (see Corollary 5.5).
Combining this with a little algebraic geometry yields the desired factdiat b) # 1
with probability tending to 1, and Theorem 1.1 follows quickly from this and the random
generation result.
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2. Probabilistic generation

In this section we present a number of results concerning probabilistic generation of
finite simple groups. All are either taken from, or are easy consequences of, results in [6,7,
13-15].

For a finite groupG, and subsetd, B of G, defineP4 g (G) to be the probability that
{a,b) = G for randomly chosen € A, b € B. In other words,

l{(a,b) € A x B: {a,b) =G}

Py g(G) = A % B

Write also P4 «(G) instead ofP4 g (G), and forg € G write P, p(G) = Pg),5(G) and
Py (G) = Pig),+(G). Thus Py (G) is the probability that for randomly chosere G we
have(g,7) =G.

If » is a positive integer, denote hy(G) the set of elements of orderin G, and set
i,(G) =1|I,(G)|. As in [13], define

P.5(G) = P1,6),1,(6)(G), P +(G) = P1,(6),6(G).

Thus P, (G) is the probability that randomly chosen elements of ordessin G
generates.

Now let G be simple. Itis provedin [13, 1.1], [14, 1.1] th&% .(G) — 1 as|G| — oo;
in [13, 7.1(iii)], [14, 1.2] that, providedG is not a Suzuki grouppP3 «(G) — 1 as
|G| — oo; and in [13, 1.4], [8] that, provided; is not a Suzuki group oPSp(g), we
have P> 3(G) — 1 as|G| — oo. The next result is a slight refinement of these to the case
where our simple grouf is of fixed Lie type, and our random elements are chosen from
specified large conjugacy classedhf

Proposition 2.1. Fix a Lie typeX, and for each prime power, let X (¢) be the finite simple
group of typeX over the field?, (whereg is an odd power of or 3for X = 2Fs, ?B2, °G>).

For eachg, choose a simple adjoint algebraic groitpover an algebraically closed field of
characteristicp = chai[F,), and a Frobenius morphismy, of H, such thatX (¢) = (Ho,)'.
Leta, b € H be elements of orde}, 3 respectively, such that the dimensions of the classes
afl, bH are maximal.

(A) The classa’! intersectsX (¢) nontrivially; so does the class’, provided X (¢) #
%Ba2(q).
(B) Excluding the exception ifA), takea, b € X (¢) and define
A=aX@, B =bpX@D
Then the following hold.

(i) Pax(X(g))— lasq— oo.
(i) Pp+(X(q)) — lasq — oo, providedX (¢) # 2Ba(q).



268 M.W. Liebeck, A. Shalev / Journal of Algebra 268 (2003) 264-285

(iiiy P4.p(X(q)) — lasq — oo, providedX (¢) # PSp(q) or 2B2(q).
(iv) SupposeX(g) = PSp(q) with charlF,) # 2,3 for all ¢; then P4 p(X(q)) — 1 as
q — oo, providedb has two eigenvalueson the naturaéd-dimensional module.

Proof. (A) The classes of elements of orders 2, 3 of largest dimensiéhane calculated
in the proofs of [13, 4.1, 4.3], from which it is evident that each such class has a
representative itX (¢), apart from elements of order 3 whéfg) is a Suzuki group.

(B) For X(q) classical, parts (i), (ii), (iii) are proved using [13, Proposition 2.6], as
shown at the end of [13, §2]; and part (iv) is proved in the last half of the proof of [13, 6.3].
For X (¢) exceptional we see from the proof of [13, 4.3] that > (1 —0(1))i2(X (¢)) and
|B| > (1—o0(1))i3(X (¢)), whence (i), (i) and (iii) follow from [14, 1.1], [14, 1.2] and [8]
respectively. O

The next result is taken from [6, Theorem 1] and [7, Theorem 2].
Proposition 2.2. Let G be a finite simple group of Lie type ovEy.

(i) ThenG contains a conjugacy clags such thatP, ¢(G) > 1/10forall 1# g € G.
(i) If we defineP~(G) = min{P,(G): 1# g € G}, thenP~(G) — lasqg — co.

Note that the conclusion of (i) follows for quasisimple grou@isas well, taking
g ¢ Z(G).

If A is afinite groupk is afield, andv is ak A-module, we say thal is avirtually free
kA-moduleifV | A=F & U, whereF #0 s free and din/ < 2|A|+ 4. Andif W isa
vector space over and A < GL(W), we sayA is embeddedirtually freelyin GL(W) if
W is virtually free as & A-module. In such a situation, # = Z(GL(W)), then the image
of A in PGL(W) is AZ/Z = A, and we say also that is embedded virtually freely in
PGL(W).

Note that any finite groupl can be embedded virtually freely in any classical simple
group G with natural moduleV of dimension withn > 2|A| 4 2 overF,. One way of
seeing this is as follows. & = PSL(V), write n = m|A| + r with r < |A], and regard
V as anA-module of the form(F,A)" @ I, wherel, denotes the triviat-dimensional
A-module. Otherwise, observe th@t, A)? admitsA-invariant non-degenerate symplectic,
orthogonal and unitary forms. By takirigto be a suitable direct sum of such modules with
an appropriate trivial module we obtain a virtually free embedding of G.

We can now state th@, B)-generation result referred to in the Introduction.

Theorem 2.3. Let A, B be nontrivial finite groups, not bot-groups. Then there exists a
positive integerf (|A|, | B]) such that the following holds. t& is a finite classical simple
group of rank at leastf (|A|, |B]), and A, B are embedded virtually freely i&, then for
randomly chosene G, the probability that A, B’) = G tends tol as|G| — oc.

Proof. SinceA, B are nontrivial and not both 2-groups there are primesot both 2 and
elements: € A andb € B of ordersr, s respectively. LetV be the natural module fa&.
Since A is embedded virtually freely iz, as an{a)-moduleV has a free submodule of
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bounded codimension. Similarly, agia-moduleV has a free submodule of bounded codi-
mension. The proof of the main result of [15] now shows that, assuming the dimengion of
is large enough, random conjugate&ob in G generates with probability tending to 1 as
|G| — oo. This meansthat, if € G is chosen at random, then the probability that’ gen-
erateG tends to 1, and so the probability tHat, B’) = G alsotendsto 1 d€| — co. O

3. Groupsof unbounded rank

Let G = Cl,(¢) < Sl,(¢g) be a classical quasisimple group with natural modtle-

Vi = (Fy)". Let(, ) be the form or¥ fixed by G (bilinear if G is symplectic or orthogonal,
sesquilinear ifG is unitary, and identically zero iff = SL,,(¢)); and if G is orthogonal, let
Q be the quadratic form oW fixed by G.

In this section we consider the cases of Theorems 1.1-1.3 where the coll€atifon
simple groups consists of classical groups of unbounded dimension. Hence in this section
we assume that is large.

We begin with an elementary result on linear algebra.

Let I denote the identity matrix iF. For a matrixa € G let rk(a) denote its rank, and
set

v(a) =min{rk(a — A1): 1 € F,}.

Lemma 3.1. Letn > 2d. Letas, ...,aq € G, sety; = v(a;) and lety = min{vy, ..., vg}.
Letvs, ..., vs € V be randomly chosen linearly independent vectors. Then the probability
that the vectorss, ..., vg, v1a1, .. ., vgaq are linearly independentis at least— qd—”.

Proof. Supposev, ..., vq, via1, ..., vgag are linearly dependent. Then there are scalars
M, ..o hdy 11, - -, g € Fy, not all zero, such thal?_; A;v; + Y0 wivia; = 0. Since
v1, ..., Vg are linearly independent thereiisvith n; # 0.

The number of choices fqus, ..., ug not all zero up to multiplication by a common
scalarix # 0 is (¢g? — 1)/(g — 1). Now, given us, ..., uq, the scalarsiy, ..., 1y are
uniquely determined (sincg, .. ., vg are linearly independent), and we have

d
Zvi(ﬂiai +x;1)=0.
i=1

This equation can be viewed as a systemnolinear equations indn variables (the
coordinates of the vectors) overF,. Let r denote the rank of the x dn matrix of
this system. Then > min’_, rk(u;a; + A; I). There existg with u; # 0, so for this value
of i we have

r > rk(uia; +Aril) = v(a) > v.

By standard linear algebra, the system above §t#s” solutions, so the probability
thatd randomly chosen vectors il form a solution isqg™" < ¢~". Now, d randomly
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chosen vectors are linearly independent with probability at leasy4~". Therefore the
probability thatuvs, ..., vy form a solution is at mostl — g¢~")~1¢~". Summing over
the choices fops, ..., ug we see that the probability that, .. ., vy, v1as, ..., vsaq are
linearly dependentis at mogt? —1)/(q —1)- (1—¢?~")~1¢~". Itis easy to see, using the
inequality 2/ < n, that this expression is bounded above;8y”. The result follows. O

Let V; denote the set of all-tuples of linearly independent vectars, ..., vs in G.
Clearly (1 — 0, ()| V|4 < [Va| < V|4,

Corollary 3.2. Supposd is fixed,as, ...,aq € G, andv(ay), ..., v(ag) — oo asn — oo.
Choose linearly independent vectars ..., v; € V at random. Then the probability that
v1,..., 04, 01d1, ..., Vgagq are linearly independent tends 1oasn — oo.

Consider the free produci«Z = G % (T'), and letw = w(T) € G xZ be a non-identity
element. Then we can write

w = alTklaszz .- -alTk’,

wherea; € G, k; € Z, anday, ...,a; # 1, andky, ..., k;_1 # 0. We callg; the coefficients
of w, and define(w) = min(v(4;): a; #1).

For eacht € G, we define the specialisation(r) € G to be the image ofv under
the homomorphism fronts * (T) — G induced by the identity map o6& and the map
sendingT" to ¢. Our aim is to show that if (w) — oo, andr € G is chosen at random, then
the probability thatw(z) is non-scalar tends to 1. Replacingoy T~"wT™ for m # 0, k1
or —k;, we may assume that = 1 andk; £ 0.

Letd = |k1|+-- -+ k| (the degree ofv with respect td’), and writew = wiws - - - wg,
where eachw; = w; (T) = g; T®, whereg; € {1, —1} andg; € G (possibly 1).

Letis,...,i. be the set of indices 1 <i <d, for whichg; # 1. We will say that a se-
guence of vectors, . .., vg+1 in V isw-goodif the vectorsuy, ... ., va+1, Vi, &g - - - » Vi, &i,
are linearly independent. Further, we call such a sequenfsasibleif it is w-good, and
there ist € G such that;w; (r) = v;41 foralli =1, ..., d. Note that these equationszin
take the form

(igt=vip1ife; =1 and vyt =vigife=-1 (1<i<d). (1)

Clearly if the sequencey, ..., vys+1 is w-feasible, then(v;, v;) (and alsoQ(v;) if G is
orthogonal) does not depend drin particular, if one of they; is singular, then so are all
of them.

By Corollary 3.2, almost all sequences of vectors.. ., vys41 are w-good, provided
ki, ...,k are fixed, and each(g,-j) tends to infinity. By definition the elemengs, lie in
the sef{as, ..., a}.

Corollary 3.3. Let w be as above, and supposéw) — oco. Then the probability that
a sequences, ..., vg+1 Of linearly independent vectors is-good tends td.. The same
holds ifv; is some fixed non-zero vector and ondy. .., vs41 are chosen at random.
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Proof. The first statement is immediate from Corollary 3.2, and the second from the proof
of Lemma3.1. O

Ford > 1, definex(d) to be 0,(3), 42, (‘2% if G = SL.(9), Sp, (@), SUx(¢Y?), O0u(q),
respectively.

Lemma 3.4. Suppose the sequengg. .., vy4+1 € V is w-feasible and consists of singular
vectors. Then the number of elementsG satisfyingu; w; (1) = v;41 foralli =1,...,d
is at least(1 — 0, (1))|V|~4¢*D|G].

Proof. The conditions orr can be written in the form;r = u} (1 <i < d) for suitable
vectorsu;, u;. Let S be the set of elementse G satisfying these conditions. Thehis
non-empty byw-feasibility.

Now let U = (ui,...,uq). Observe thatsy,...,uys are linearly independent since
v1,...,V4+1 IS w-good. Hence diny = d. Let H be the pointwise stabilizer df in G.
Then S is a coset ofH, hence|S| = |H|. Proposition 14 of [4] shows thdG : H| =
(14 0,(1)|V|¢g~*@ and the conclusion follows. O

We will make use of the following easy observation.

Lemma35. Letg € G, and letU < V be an f-dimensional subspace. Then the number
of vectorsv € V for whichvg € (U, v) is at mosty”*+/+1-v(8),

Proof. If v is such a vector, then there ise F, such thatv(g — AI) € U. There are
g choices forix, and givenr we have rkg — A1) > v(g). Hence the kernel of the map
g — MV — V has size at mos§”"~"®), so the inverse image df has size at most
g’ -¢""® . The conclusion follows. O

Lemma 3.6. Let w be as above, and let= v(w). Fix a non-zero singular vectan € V.
Then the number of sequences...,vs+1 € V such thatvy, ..., vs41 IS w-feasible
exceedsl — o0, (1)|V|9qg~*D,

Proof. In the caseG = SL,(¢) everyw-good sequence ig-feasible, so the conclusion
follows from Corollary 3.3. So suppogeis symplectic, unitary or orthogonal.

A sequences, ..., vg+1 is w-feasible if and only if there existse G such that Eqs.T)
hold, and also the séf = {v;,v;g;: 1<i,j<d+1, g; #1}is linearly independent.
Observe that if the sequenceusfeasible, ther¥ consists of singular vectors, sinegis
singular. Equationsgt) are of the fornw;t = 8; (1 <i < d), wherea;, 8; € Y; by Witt's
lemma, for singulat;, 8;, the existence of a solutiane G is equivalent to the system of
equations

(Ol,',()lj)Z(,Bi,,Bj) for all i,]J. (0)

We now estimate the number of sequenegs .., vy of singular vectors such that
() holds andY is independent. This is done recursively as follows. The vecios
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already given. Supposed k < d and singular vectorss, ..., v, are given, such that
Vi ={vi,vjg;: 1<i,j <k, g; #1}is linearly independent, an@;, «;) = (8;, 8;) for
all 1<, j < k. To form the next vector in a-feasible sequence; 1 has to satisfy the
following:

(1) (i, ax) = (Bi, Br) for 1 <i <k,
(2) vg+1 is singular,
(3) Yiy1is linearly independent.

The restrictions in (1) yield — 1 linear equations op,1. Since the seYy is linearly
independent, these equations are linearly independent, hence their solution space is some
cosetu + U of a subspacé& < V of codimensiork — 1.

Now let Ny be the number of singular vectors in the coset- U. Using [4,
Proposition 11] we see that, = ¢" **1if G is symplectic Ny = (14 0,(1))g"*+1/2 it
G is unitary, andVy = (1+ 0,(1))¢" % if G is orthogonal.

Obviously, the number of vectorg_ 1 satisfying conditions (1) and (2) is precise¥y.
Condition (3) amounts to requiring that,1 ¢ (Yx), and also thatg+1gx+1 & (Y, vkt1)
if gr+1# 1.

Since|Y:| < 2k the first restriction above leaves us with at ledst— q2k choices for
V1. If get1 # 1 thenv(get1) > v.

Define My = Ny — g% — ¢"+%+2=v_Using Lemma 3.5 withy = gx,1, we see that
there are at leas¥;. vectorsvi41 € V satisfying (1)—(3) above. Altogether it follows that
there are at Ieas}f[izl M; w-feasible sequences, ..., viy1.

Note thatk < d is bounded, henc&f; > (1 — 0,(1))Nx. This implies thaf[¢_, My >
(1 — 0,(W) [I{_; Ni. Finally, we have[]¢_; N = (1 + 0,(1)|V|%g~*@. The result
follows. O

We can now prove the main result of this section.

Theorem 3.7. Letw € G % Z be as above, and supposéw) — oo asn — oco. Choose
t € G atrandom. Then the probability that(z) is non-scalar tends ta.

Proof. Fix a non-zero singular vecteg € V, and writev = v(w).

Then there are at leagt — 0, (1))|V|?¢ %@ w-feasible sequences, . .., vs41. Now,
for eachw-feasible sequenaa, ..., vs+1, the number of € G satisfyingv; w; (t) = vi11
(i=1,...,d)is atleast(1 — 0,(1))|V|~4¢q*¥|G| by Lemma 3.4. Summing up over the
w-feasible sequences we see that at least

(1—0,() VgD (1 - 0,(D)IVI™¢* D |G| = (1 - 0,(D))|G]

elements € G satisfy viw(t) = vy41 for somevy41 ¢ (v1). Hence the probability that
w(t) is non-scalartendsto 1 as— co. O

Recall from Section 2 the definition of a virtually free embedding of a finite grodp.in
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Corollary 3.8. Let A be a fixed nontrivial finite group. Lt w e A+« Z = A % (T). For
t€Glet¢,:Ax7Z — G beahomomorphism induced by embeddinin G virtually
freely, and by sendind@ to ¢. Then, ag € G is chosen at random, the probability that
¢, (w) is non-scalar tends th asn — oo.

Proof. Let A < G as above. As the embedding is virtually free, we haxe) >
(n —2|A| — 4)/|A| for all 1 # a € A. Therefore, ifn — oo so doesv(w). The required
conclusion now follows from Theorem 3.7 0

For the applications we shall also need the following, slightly more technical, result.

Coroallary 3.9. Let A be a fixed nontrivial finite group. L&t~ w € AxZ = A% (T), and for
teG letg,:AxZ — G be as above. Fix a conjugacy cla€s=x“ in G. Then, ag € C
is chosen at random, the probability that(w) is non-scalar tends té asv(x) — oco.

Proof. We rewritew by replacing? with 7~1x 7. In this way we obtain a non-identity
word in G = (T') such that its coefficients are either non-identity elements af or x. We
see thab (a;) — oo for all the coefficients;, yielding the result by Theorem 3.70

The final corollary concerns free products of arbitrary finite groups A &8 be fixed
nontrivial finite groups. Fix embeddings: A — G, g: B — G, such thatf (4) andg(B)
are virtually free inG.

Corollary 3.10. For t € G let y; : A x B — G be the homomorphism induced by sending
acAto fla)eG,andbec Btogh) eG.If 1£we Ax B, andt € G is chosen at
random, then the probability that, (w) is non-scalar tends to 1 as— oo.

Proof. This follows in a similar manner: we rewrite = ajbiazbz... by replacing
eachb; by T~1p;T. This gives a non-identity word in’ € G * (T') such thatv(w’) >
min((n — 2|A| — 4)/|A|, (n — 2|B| — 4)/|B]), hencev(w’) — oco. The conclusion now
follows from Theorem 3.7. O

At this point the proofs of Theorems 1.2 and 1.3(iii) can be quickly deduced. Observe
that the cases of Theorems 1.1 and 1.3(i), (ii) where the collegtioansists of simple
groups of unbounded rank follow immediately from Theorems 1.2 and 1.3(iii).

Proof of Theorem 1.2. Assume the hypothesis of Theorem 1.2. Givesg v € A % B,

it suffices to find a grougd € S and an epimorphism from * B to H sendingw to
a non-identity element. FoH € S let G = Cl,(¢) < SlL,(¢) be a quasisimple group
with G/Z(G) = H. Fort € G, definey; : A x B — G as in Corollary 3.10, and let
V::A x B — H be the composition ofy; with the canonical mapr:G — H. By
Corollary 3.10, the probability thaf, (w) # 1 tends to 1 as — oo. The image ofy;

is (m(f(A)), m(g(B)")), and by Theorem 2.3 this image is equalHowith probability
tending to 1 as: — co. Hence ifn is large enough, there exists G such thaty, is an
epimorphism and/; (w) # 1, as required. O
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Proof of Theorem 1.3(iii). Assume the hypothesis, and letAlw € A x Z. As above,
for H € S let G = Cl,(¢) with G/Z(G) = H. By Proposition 2.2(i) and the remark
following it, G has conjugacy clags = x such thatP, ¢ (G) > 1/10forallg € G\Z(G);
moreover, we see from [6] tha(x) — oo asn — oco. Fort € C define¢;: A «Z — G as
in Corollary 3.9. By Corollary 3.9 the probability that(w) is non-scalar tends to 1; and
by Proposition 2.2(i), for at least/10 of the elementse C we have(A, t) = G. Hence,

if n is sufficiently large, both conditions hold for someThereforep, is an epimorphism
from A x Z to G sendingw to a non-scalar. The result follows by composigwith the
canonicalmag; — H. O

4. Groupsof bounded rank, I: a preliminary result

In our proof of the bounded rank cases of Theorems 1.1 and 1.3, we shall require the
following result, showing that in any classical algebraic gratpa subgroup of typety
can be found which contains involutions and elements of order 3 lying-olasses of
maximal dimension.

Theorem 4.1. Let G be a simple adjoint algebraic group over an algebraically closed field
K of characteristicp, and leto be a Frobenius morphism a@. Assume that the fixed
point groupG,, is not a Suzuki groupB(g). Then there exist elementsh € G, with a

of order2 andb of order3, such that the following hold

(i) dima® and dimbC are maximal among the dimensions @fconjugacy classes of
elements of orde? and 3, respectively, and

(i) there is an embedding: PSlo(K) — G such thaiim(¢) intersects botta® and 5%
nontrivially.

Proof. Casel: G classical Assume that is classical. The classes of largest dimension
of elements of order 2 or 3 it¥ are given by [13, 4.1] and its proof. We record here the
dimension%(G), I(G) of the largest classes of elements of order 2, 3 respectively:

G k(G) 1(G)
PSL (K) (n?/2] [2n2/3]

PSPy, (K), PSOp41(K) m2+m [2(2m2 + m) /3]
PSQy, (K) m?+1—@2,m)  [22m%—m)/3]

In all cases there are either one or two classes of involutions of dimeh&iHn and one
or two classes of elements of order 3 of dimengi@); suitable elements in each of these
classes can be read off from the proof of [13, 4.1]. By Proposition 2.1(A), each class has a
representative i6 .

Let V be the natural module associated wih so thatG = PSL(V), PSV) or
PSQV).

Write A = SLp(K). We adopt the usual notation for irreducibieA-modules: for
0<r < p—1, denote byV,(r) the irreducibleK A-module with high weight-. This
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module has dimension+ 1, and can be realised as the spatgr) of all homogeneous
polynomials of degree in two variables, with the natur&@Lly-action. If T is a maximal
torus of A, the weights off on V4 (r) arer,r —2,r — 4, ..., —r. If ris odd thenV4(r) is
a faithful symplectic module foA = SLy(K); and ifr is even therV4 (r) is an orthogonal
module forA/Z(A) = PSLy(K).

(A) Assume first thap > 3, dimV = 2m is even, and; = PSL(V) or PSV). In this
case, define a 6-dimensionkdlA-moduleVg as follows:
Ve=Va(3) @ Va(l) if p=5, and
Ve=Va() @ V4(2) if p=3.

Observe thaVs is a symplectic module foA (with the direct sum being a perpendicular
sum). Write

a = diag(i, —i), b = diag(w, o) € A,
wherei is a fourth root of unity ana a cube root of unity irk. Then

a¥e =diag(i,i,i,—i, —i,—i), and

bVe — { diaQ(u, w, (1)2, (,()2, 1, 1) (p > 3)’
diaq']3a J3) (p = 3)

(whereJs denotes a Jordan block of size 3).
Now let 2n = 6k + r with k an integer and = 0, 2 or 4. Define anr--dimensional
A-moduleV, as follows:

r Vi

0 0
2 VA(l)
r=4, p>3 Va3
r=4, p=3, G=PSLYV) H(3)
r=4, p=3, G=PSgV) VA (D)2

(where as above{ 4 (3) denotes the space of homogeneous polynomials of degree 3 in two
variables with the natural-action). Finally, let

V=WeaVv,.

Then V is a KA-module of dimension 2 admitting a non-degeneraté-invariant
symplectic form, and such that(A) acts as(—1) on V. The representation of on V
therefore embedBSLy(K) in G.

It remains to show that” andb" belong to the5-classes of maximal dimension among
elements of orders 2, 3. =0 then
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aV = (i(3k)’ _i(3k))’

s [ @®,0@) o 1@y (5 3),
I ) (p=3),

where bracketed superscripts indicate multiplicities.Glif= PSL(V) then dinu¢ =
dimGLg; — 2dimGLg;, = %(dim V)2; and if p > 3 then dimb® = dimGLg; — 3dimGLy,
while if p = 3 then dimb® = dimGLg;, — 2(2k)% — dimGLy (see the proof of [13, 4.1]
for formulae for the dimensions of centralizers of unipotent elements of order 3), whence
dimb¢ = %(dim V)2. Hence from the table above we see that dffnand dimpbC are
maximal, as required. Similar calculations give the conclusion wiea PSgV): here
Cg(a)? = GLgi, while if p > 3 thenCg (b) = GLy Spy, and if p = 3 then dimCg (b) =
(2k)? + dimSpy, (see [13, 4.1] again).

Likewise, ifr = 2 then

aV = (l-(3k+1)’ _l-(3k+1))’
v { (1(2k)’ w(2k+1)7 w—1(2k+1)) (p > 3),

529, 1) (p=3),

and again we check that die¥, dimb¢ are maximal.
Finally, letr = 4. ThenaV = (;+2 —;Gk+2)y- if , > 3then

’

bV = (1(2k+2)7 w(2k+l), w71(2k+1))

and if p = 3 then
bV — (J?EZkJrl),Jl) or (J?EZk)’JZ(Z))’

according asG = PSL(V) or PSV) respectively. Once again we calculate that dffm
and dimb© are as in the above table, hence are maximal.
The completes the proof in case (A).

(B) Assume in this case that> 3 and eithelG = PSQV), or G = PSLV) withdimV
odd (this covers all cases wih> 3 remaining after (A)).
Define a 12-dimensiond A-moduleV;2 as follows:

Vi2=VA(d) ® Va(2?® V4(0) if p=5,
Viz= (Va@ ® Va) @ Va2 if p=3.
Then
a"2=(1©,-19) and

pV12 — 4
(5" (p=3).
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Observe thaV¥sz is an orthogonal module fot / Z(A) = PSLy(K).
Now for 0< r < 11, define am-dimensionald-moduleV, as follows:

Ve
0

Va(0)

Va(0)?

Va2

VA2 @ VA(0)

Va@), p>5

Hp(4), p=3, G=PSLYV)

VA2 ® V402, p=3, G=PSQV)
Va(2)?

V422 ® V4 (0)

Va(22 @ Va(0)2

VAR ® Va(2)

Va2 @ Va(0)

Va@® ® Va2 p=5

Hs(4) ®Va(22 p=3, G=PSLYV)
VA3 @ V402, p=3, G=PSQV)

a b wWwNREO|>

[
P O ©OWOoW~NO®

=

LetdimV = 12k 4 r with 0 < r < 11, and define ar-action onV by setting
V= (V) ® V.
Thenthe representation dfonV embedsA/Z(A) = PSLx(K) in G. Calculating as above

with ¢V andb” (and recalling that is odd if G = PSL(V) in this case (B)), we find that
dima® and dimbS are maximal.

(C) Inthis case suppose that= 2 andG = PSL(V) or PSV). Again letA = SLy(K),
with

a= (é 1) , b:diagﬂo,w_l) €A,
elements of orders 2 and 3. Define a 6-dimensignratoduleVg by
Vo= (Va(D) ® Va(D)) & Va(d).
This is a symplectic (but not orthogonal}module, and
aVe = (12(3))’ bYe = (12, 0?, 0w~ 1?).

Consider the embedding of in SpVs) = Sg;. In the notation of [1, §7]a"6 lies in
the class represented by the eleméntBy [1, 7.7], it follows thatVg(a) = {v € Vs:
(v, va) = 0} # V. Hence if we embed/s in a symplecticA-module of the formV =
Vs L W, then the involutiorr = a"6 | o satisfiesV (1) # V, hence by [1, 7.7] lies in
classby or c; of Sp(V), for somek. Note that the largest involution classes3p,,, (K)
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are represented ki, if m is odd and by, if m is even (see the proof of [13, 4.1]; these
elements act as matrice.sz(m)).
For 0< r < 5 define amA-moduleV, as follows:

Ve
0

Va(0)

Va)
V4(1) ® V4 (0)
Va(D) @ Va(D)
V()2 @ VA (0)

GO WNEFEO|Y

Forr even,V, is a symplecticA-module. Let dinV = 6k +r with 0 < r < 5, and define an
A-action onV by settingV = Vé‘ @ V,. This action is symplectic whenis even, and using
the above remarks on the clas#gs ¢, in the case wher& is symplectic, we calculate
that dimz¢ and dimb° are maximal.

(D) Itremains to handle the case where- 2 andG = SQ(V). Define a 12-dimensional
A-moduleVi2 by

Viz= (Va(D) ® Va(D)* & Va(D)?2.

This is an orthogonal module (the twd,(1)s being totally singular subspaces), with
aV12 = (Jz(e)) andb"12 = (19, @, 1@y Calculation shows that in the action of
on the 4-dimensional orthogonal modWg= V4 (1) ® V4 (1) we haveVa(a) # V4. Hence
in the notation of [1, §8] we have'* conjugate taz, and so by previous observations,
a"12 s conjugate tag € SOL».

Forr even with 0< r < 10, define am-moduleV, of dimensiorr as follows:

2
0

Va(0)?

Va(D) @ Va(D)

VA(D)2 @ V4 (0)2
(Va(D) ® Va(1)?

(VA1) ® Va(1) ® VA(D2 @ V4(0)2

A NO|>

=
o oo

Let dimV = 12k + r with r even and & r < 10, and define ard-action onV by setting
V = V& @ V,. This makesV an orthogonald-module, and the usual calculations show
that dima® and dimb® are maximal.

This completes the proof of the theorem in the case wieiclassical.

Case2: G exceptionalAssume now tha is of exceptional typ& o, Fu, Es, E7 OF Eg.
ThenG has a maximal rank subgroup= A, A1C3, A1As, A2As Or AgA4 respectively.
Write A = SLo(K), with elements:, b as above. We define an embeddif\gA — D as
follows. ForG # Gy, let R1, R> be the simple factors ab, so thatD = (R1 x R»)/Z for
some central subgroup. In the table below we specify representatignsA — R;; then
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fora € A, ¢(a) is defined to be the image modulbof (¢1(a), p2(a)). Fori =1, 2 the
representatio; is specified by giving the restriction t& of the natural module for;.
(ForG = G2, D = Ao we give the restriction of the naturdb-module.)

G D Representationgq, ¢
Gy Ao Va@ (p =23

Va) e Va0 (p=2)

Fy, Eg A1C3, A1A5 Va(l), Va(®) (p>5)

VaD), VA ® Va2 (p=3orh
VA, VA ®Va) e Va) (p=2)

E7 A24s5 Va(2), Va(® (p>5)

Va2, VA ® Va2 (p=3orh

VA @ Va0, VaD®Va)®VA(D) (p=2)
Eg AgAy Va@), Va@@ (p =95
Ha®), HA(H (p=3)
Va(D) @ Va(D) @ V4(0), Va(D @ Va(D) @ Va0 (p=2)

The restriction of the adjoint module(G) to D is given by [20, 1.8], as follows, where
we just give the high weights of the relevant irreducibles:

G D (L(G)/L(D)){ D
Go Ao A1 @ Ao

Fy A1C3 1®x3

Eg A1As l®)»3

E7  Az4s (A1 ®22) ® (A2 ® Aa)

Eg AgAy (A1®212) & (A2 Q@ 11) & (A4 ® A3) & (A3 ® Ag)

(Note that the prime restrictions in the hypothesis of [20, 1.8] are present just to ensure
the complete reducibility of.(D), and do not affect the proof otherwise.) To calculate
with the above modules, note that the irreducible4grwith high weighth; is just theith
alternating power of the natural module; and€arthe irreducible with high weightz has
dimension 14, and is the alternating cube of the natural module factored out by the natural
module.

From these restrictions we see immediately that the ingeage of A in G is PSLx(K),
and we can calculate the actions of the elemerdasadb on L(G). When these elements
are semisimple (i.ep # 2, p # 3 respectively), we find that didi, ) (a) = 6, 24, 38,
63, 120 and dinfz)(b) = 4, 16, 24, 43, 80, according & = G2, F4, Es, E7, Eg
respectively. It follows thaCg (a)® = A141, A1C3, A14s, A7, Dg andCg (b)° = A1Tx,
A%, Ag, AzAs, Ag respectively. These are well known to be the smallest dimensional
centralizers of semisimple elements of orders 2 and 3 (see, for example, [12, 1.2]). The
corresponding classe$’, b° are fixed by any Frobenius morphismand hence by [24,
I, 3.4] have a representative G, .

To conclude, suppose or b is unipotent (sop = 2 or 3). Calculating from the
embedding ofp(A) in D and the restrictior.(G) | D, we find the Jordan block sizes
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of a andb on L(G). From this information, the tables in [11] specify the unipotent classes
of G containinga, b, which are as follows:

G=Gy Fy Eg E7 Eg
p=2, ainclass A1 A1+ A1 3A1 4A1 4A1
p=3, binclass Ga(ay) Ax+ Aq 242+ Aq 245+ Aq 245+ 241

(ForG = F4, p = 3 we also need to calculate with the action on the 25-dimensional module
Vr,(A4) to show thath is in classA, + A; rather thanA; + A».) It now follows from

the classification of unipotent classes and centralizers in [3,18,19,22,23] that the classes
a%, b° have maximal dimension. Finally, these classes are all fixed,dyence have a
representative ;. This completes the proof of the theorent

5. Groupsof bounded rank, I1: proof of Theorems1.1and 1.3

In this section we prove Theorems 1.1 and 1.3(i), (ii) in the case where the coll&ction
consists of simple groups of Lie type of bounded rank.

The first few lemmas show that the relevant free prodaets C3, C2 x Z andCsz * Z
lie in PSLy(F) for any local field F. The proofs then proceed by combining this with
Theorem 4.1 and the results from Section 2 on probabilistic generation.
Lemma 5.1. Let A, B be groups and leC < A N B be a common subgroup. Consider
the free product with amalgamatiad = A x¢ B. Let A1 < A and By < B be subgroups
satisfyingA; N C = B1 N C = 1. Then the subgroup db generated byd; and B is the
free productA; * B1.

Proof. This follows immediately from the normal form theorem for free products with
amalgamation; see, for instance, [17, Chapter IV, Theorem 26].

Now let F be a local fieldO its ring of integers, and the maximal ideal ir0. Define

C= {(““ “12> €Sly(0): an € n} < Sl(0),
a1 az

and letC < PSl»(0) be the image o€ moduloZ(SLy(0)).

Lemma 5.2. With the above notation we have
PSL(F) = PSLa(0) & PSL2(0).

Proof. By a result of lhara (see Corollary 1 on p. 79 of [21]) we h&@dB(F) =
SLx(0) x¢ Sle(0). Factoring out the centers yields the result

Coroallary 5.3. PSLo(Z) can be embedded in PZIF) for any local fieldF .



M.W. Liebeck, A. Shalev / Journal of Algebra 268 (2003) 264-285 281

Proof. Define

ag = <_01 é) , bop= <_01 _11> e Sly(0).

Then the images:, b of ap, bg in PSL(0) do not lie in the subgroug. Applying
Lemma 5.1 we see that IRSLx(0) *z PSL2(0), takinga andb on different sides, we
have(a, b) = (a) * (b) = C2 x C3 = PSlp(Z). The result follows using Lemma 5.20

Lemma5.4.

(i) LetCax C3= (x)* (y) (withx of order2 andy of order3). Then

(x,yxy)=(x) x (yxy) =C2*Z and
(xyx,yxy) = (xyx) * (yxy) = C3* Z.

In particular, C2 * Z andC3 * Z can be embedded in PZLF) for any local fieldF .
(i) If Fis a local field of characteristip such that|O /x| > p2, then PSk(F) has a
subgroup isomorphic to PSp) * Z.

Proof. Part (i) follows from the normal form for elements 6% * Cs.

Now consider part (ii). We claim that there is a subgrdup< PSLp(0) with L =
PSl(p) and L N C = 1 (whereO and C are as above). To see this, observe that by
hypothesisPSLy(0) has a subgrouM PSlo(g) with ¢ > p?, such thatM N C is the
image modulo scalars th _1) acl?, beF,}. Inother wordsM N C= M, where
v =(0,1). Now let Lg be the copy oPSLy(p) in M consisting of matrices W|th entries
in F,. The condition that a matrix ifig fix a 1-spac€(1, o)) with « € F, implies thatx
satisfies a quadratic equation oW®y. Asg > p?, we can therefore find e IF, such that
the stabilizer inLg of ((1, @)) is 1. Consequently there is a conjugétef Lo such that
L) =1.ThenL N C = 1, proving the claim.

We can also find an involutiol e PSLo(0) with b ¢ C. Hence by Lemma 5.2 we have
L % (b) < PSLy(F). Pickl € L with [ of order at least 3.

We claim finally that the subgroufL.?, Ibl) is equal to the free produdt® x (Ibl) =
PSLy(p) = Z. This again follows from the normal form for elements of free products.

SincePSLy(F) can be embedded in any simple (untwisted) Chevalley gtoUp), we
obtain the following, which may be of some independent interest.

Corollary 5.5. Let G(F) be a simple Chevalley group over a local figid ThenG (F)
contains the free product$; « C3, Co % Z, C3x Z. If F has characteristipp and the residue
field has order at leasp®, thenG (F) contains PSk(p) * Z.

We shall apply the above results in the case whieeeF, ((r)) with p a prime. Letk,
be the algebraic closure of this field.
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In our proofs of Theorems 1.1 and 1.3 we shall make use of the following elementary
result from algebraic geometry (see, for example, [9, 2.18]). For this result we need to
set up notation for Frobenius morphisms of simple algebraic groups rather precisely,
as follows. LetG be a simple algebraic group over an algebraically closed #eldf
characteristicp, generated by root elements(¢) (o a root,z € K) in the standard way
(see, for example, [2]). Far a power ofp let ¢, be the field morphism off which sends
Xq(t) = x4(t?) for all «, ¢. Finally, definer : G — G to be either 1, or a nontrivial graph
endomorphism ofF commuting withg,, as in [2]. Thus forG = A,,, D, or Eg we have
2 =1 (or 3 = 1 for G = Dj), while for (G, p) = (F4,2), (B2, 2) or (G2, 3) we have
2= ¢p. A general Frobenius endomorphism@fis a conjugate ob, = t¢, for some
T, ¢4 as above.

Lemma 5.6. Let G, o, be as above, and suppose tHatC G is a o,-stable subvariety
which is defined ovek by at mosk polynomial equations of degree at mgstThen there
is a constant = c(e, f, dimG) such that
Vo, | < quimv.
We are now ready to prove Theorems 1.1 and 1.3(i), (ii) in the case where the collection
S consists of simple groups of Lie type of bounded rank.

Proof of Theorem 1.1 (for bounded rank case It is sufficient to establish th&Sly(Z)
is residually in any infinite set of simple groups of the fokiy) # PSp,(2/), PSp(37),
Sz27), whereX is a fixed Lie type (possibly twisted) agd— co. Such group (¢) are
of the form(G,,)’, whereG = G(K ) is an adjoint simple algebraic group of fixed type
overK,, o, is a Frobenius morphism (as defined in the preamble to Lemma 5.6} and
is a power ofp. (Recall thatk, denotes the algebraic closure of the local figjd((¢)).)
Note that ag; — oo the primep may vary.

Consider such a groui (q) = (G,,)". By Theorem 4.1 there is a subgroup of
G with Y = PSIlp(K,) such thatY N X(q) contains elements, b of orders 2, 3 and
dima®, dimb® are maximal among the dimensions Gtclasses of elements of these
orders. Moreover, by the proof of Corollary 5.3 there exists Y such that{a, b”) =
{(a) % (bY) = C2 % C3.

Fix a nontrivial word £ w = w(Y, Z) € C2 * C3. Thenw(a, b”) # 1. Define

V={reG: w(ab')=1}.

Then V is a subvariety ofG, and is proper since ¢ V. Hence din¥V < dimG. By
definition of V', the number of polynomial equations ov€y definingV, and their degrees,
depend only on the word and the type of5 (and not onp). Hence from Lemma 5.6 we
see that there is a constant c(w, dimG) such that

|Va‘q|<chimvc
We have din¥ < dimG, and from the order formulae for simple groups(q)| < ¢’¢%m¢
for some absolute constadit It follows that
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[{t € X(@): w(a,b") #1}|
1X(q)]

Now Proposition 2.1(B)(iii) shows that, providét{q) # PSp(g), we have

>1-— clqdimv_dimc >1—cq t—>1 asq— oo. (1)

[{t € X(@): (a,b") = X(9)}]
1X(q)]

When X (¢) = PSpi(q), we havep > 3 by the hypothesis of Theorem 1.1; the proof of
Theorem 4.1 shows that the elemeénis conjugate to dia@, v 1,1, 1) (Wherew is a
cube root of 1), and hence Proposition 2.1(B)(iv) shows (2) holds in this case as well.
From (1) and (2), it follows that if; is large enough, there existE X (¢) such that
(a, by = X (q) andw(a, b*) # 1.
Thus we have shown th&SLy(Z) = C2 x C3 is residuallyX (¢), completing the proof
of Theorem1.1. O

— 1 asqg — oc. (2)

Proof of Theorem 1.3(i), (ii) (for bounded rank cage Again it is enough to show that
C2xZ andC3 *x Z are residuallyX (¢), whereX is a fixed Lie type (notB, inthe C3 % Z
case) an@ — oo. ChooseG = G(K ) ando, such thatX (¢) = (G(,q)/, as above.

Again by Theorem 4.1 there is a subgrobpg= PSLy(K) of G such thaty N X (¢)
contains elementg, b of orders 2, 3 lying inG-classes of maximal dimension, and
(a,b?) = (a) x (b¥) = Co % C3.

From Lemma 5.4 we know that, bYab”?) = {(a) * (bYab”) = C2 * Z. Fix a nontrivial
word 1# w € C2 x Z. Thenw(a, bYab”) # 1. Therefore the subvariety’ = {¢r € G:
w(a,t) =1} is proper inG. Hence using Lemma 5.6 as before we see that

l{r € X(q): w(a, 1) # 1}
1X(q)]

Also, by Proposition 2.1(B)(i),

— 1 asqg— oo. 3)

I{r € X(¢): (a.1) = X(g)}]|
1X(q)]

By (3) and (4), ifq is large enough there exists=s X (¢) such that(a,t) = X(¢) and
w(a,t) # 1. This completes the proof of Theorem 1.3(i).

Finally, for Theorem 1.3(ii), observe that using Lemma 5.4 it follows that there exists
an element € G such thatip, z) = (b) % (z) = C3* Z. Let 1# w € C3 x Z, and define the
subvarietyV” = {r € G: w(b,t) = 1}. Thisis then proper i, and the proof goes through
exactly as above. O

— 1 asqg — oc. 4)

To complete the paper we prove the partial result on free produetZ with A <
PSLy(p) referred to in Section 1.

Proposition 5.7. Fix a prime p, let A be a nontrivial subgroup of PSkp), and letS be
a collection of finite simple groups of Lie type of bounded rank in charactenistiot
containing Sg). Then the free product * Z is residuallysS.
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Proof. As before letX be a fixed Lie type an& (¢) = (G,,)’, whereG = G(K ). We
need to show that x Z is residually in any infinite set of groups(q).

Now X (g) has a subgrou = PSlx(p) which lies in a subgrouy = PSL(K,)
of G. MoreoverL is unique up to conjugacy ifi. Sincek, containsF ,¢((¢)) for anye,
Lemma 5.4(ii) implies that there is an injectign PSly(p) * Z — Y sendingPSLy(p)
to L. LetT be a generator of th& factor, and let = ¢(T) € Y.

Now let 14 w € A xZ. Fort € G, defineg, : A x (T) — G to be the homomorphism
acting onA as¢ and sending to 7. Theng,(w) # 1, so we see in the usual way using
Lemma 5.6 that

I{t € X(q): ¢1(w) #1}|
X (q)I
Using Proposition 2.2(ii), we see that, @as—~ oo andt € X (¢) is randomly chosen, the

probability that{¢(A), t) = X (¢) tends to 1. Therefore for sufficiently largethere exists
t € X(g) such that, (w) # 1 and Inm{¢;) = X (¢). The conclusion follows. O

—1 asq — oo.
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