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Abstract. This paper answers a question of Burns, Karrass and Solitar by
giving examples of knot and link groups which are not subgroup-separable.
For instance, it is shown that the fundamental group of the square knot com-
plement is not subgroup separable. Let L denote the fundamental group of
the link consisting of a chain of 4 circles. It is shown that L is not subgroup
separable. Furthermore, it is shown that L is a subgroup of every known non-
subgroup separable compact 3-manifold group. It is asked whether all such
examples contain L.

A group G is said to be subgroup separable if each finitely generated subgroup H
is the intersection of finite index subgroups of G. The first example of a 3-manifold
group which is not subgroup separable was given in [BKS]. In that paper, Burns,
Karrass, and Solitar observed that their example K is not a knot group, and they
asked if knot groups are subgroup separable. The primary purpose of this paper is
to answer their question by giving examples of knot and link groups which are not
subgroup separable.

In section 1, the example K of [BKS] is used to show that a closely related group
L is not subgroup separable. L is the fundamental group of the complement of a
very simple link: the chain of four circles illustrated in Figure 2.

In section 2, L plays the role of a poisonous subgroup in the proof of Theorem 2.1
which characterizes the subgroup separability of certain amalgamated free products.
For instance, as a special case of Theorem 2.1 we obtain the following corollary:

Corollary. Let G = (Fm × Z1) ∗Z2 (Fn × Z3), where for each i, we let Zi denote
an infinite cyclic group, and we let Fi denote a free group of rank i. Then G is
subgroup separable if and only if G is virtually Fq × Z4 for some q.

The example of [BKS] was exploited in [LN] to produce various other non-
subgroup separable groups. For instance, in [LN] the authors construct a non-
subgroup separable example R ∗Z R, where R is the (4, 4, 2) triangle group. Their
examples motivated Theorem 2.1, which places their examples in a more general
class.

In section 3, Theorem 2.1 is used to show that various knot groups are not
subgroup separable. Perhaps the simplest such example is the following corollary.
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3.4 Corollary. The fundamental group of the complement of the square knot is
not subgroup separable.

Another source of examples of compact 3-manifold groups which are not sub-
group separable is due to [RW]. Their examples are more geometric than the
example of [BKS] and are derived from beautiful ideas involving immersed surfaces
that don’t satisfy the k-plane intersection property.

The groups of both [RW] and [BKS] are studied in [NW] where we show that
they contain finitely generated subgroups which are not contained in any proper
finite index subgroups, so these groups are as far from being subgroup separa-
ble as possible. In section 4 of this paper we show that L is a subgroup of every
non-subgroup separable 3-manifold group obtained in [RW], by establishing the fol-
lowing characterization of graph manifolds whose fundamental groups are subgroup
separable:

This is dealt with in section 4, where we prove the following:

4.2 Theorem. Let M be a compact graph manifold. Then the following are equiv-
alent:

(1) π1M is subgroup separable.
(2) M is a Seifert manifold or M is virtually a torus bundle over S1.
(3) There is no embedding of L in π1M .

In conclusion, the results of this paper show that L occurs as a subgroup of
every known non-subgroup separable compact 3-manifold group. It is not difficult
to show that every finite index subgroup of L contains a subgroup isomorphic to
L. This motivates the following question:

Question. Does every non-subgroup separable compact 3-manifold group contain
L as a subgroup?

Since L is not a subgroup of any hyperbolic 3-manifold group, the question would
be resolved negatively if one could find a hyperbolic 3-manifold whose fundamental
group is not subgroup separable [T]. This is an old problem which appears to be
quite difficult. We refer the reader to [W] for a description of some of the latest
developments.

1. The link group L

We first recall the example K of [BKS] of a 3-manifold group which is not
subgroup separable. It is presented there as K = 〈y, α, β | y−1αy = αβ, y−1βy =
β〉. It will be convenient to use the following slightly different presentation:

K = 〈j, k, t | [j, k], t−1jt = k〉.
An isomorphism between the groups of these two presentations is induced by the
map t 7→ α, j 7→ y−1, k 7→ βy−1.

1.1 Example. Let L denote the group presented by

L = 〈x, y, r, s | xr = x, yr = y, xs = x〉.

1.2 Theorem. L is not subgroup separable.

Proof. We prove this by showing that K has an index 2 subgroup K ′ which is
isomorphic to a subgroup of L. This implies that L is not subgroup separable
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Figure 1.

because of the following two easy facts [S]: 1) A finite extension of a subgroup
separable group is subgroup separable; 2) A subgroup of a subgroup separable
group is subgroup separable.

The argument is best explained in terms of graphs of spaces as in Figure 1. Each
vertex in Figure 1 represents a torus S1 × S1. The two circles in the 1-skeleton of
a torus vertex space are oriented and labeled by the two distinct symbols incident
at the corresponding vertex.

Each edge in Figure 1 represents a cylinder S1×I where the boundary circles are
oriented consistently and labeled as indicated in the diagram. Each such cylinder
edge space is attached at each end by a label preserving and orientation preserving
combinatorial map.

The maps between the graphs in Figure 1 are described as follows: The map
designated by the equality sign is the obvious isomorphism. The map designated
by the inclusion sign is the obvious label preserving inclusion. The two maps
designated by arrows are double covers which preserve only the alphabetical part
of the label, e.g., both j and j′ map to j.

Furthermore, our maps between two graphs of spaces are the obvious combina-
torial maps corresponding to the maps between their underlying graphs.

It is easy to see that the 2-complexes on the left and right are isomorphic to
the standard 2-complexes of the presentations of K and L respectively. We let K ′

denote π1 of the second 2-complex (from the left), and since the map to the leftmost
complex is a double cover, K ′ is of index 2 in K.

To show that K ′ is isomorphic to a subgroup of L, we observe that the sequence
of maps from the second complex to the fifth complex induces π1-injections since
they are respectively an isomorphism, a subgraph of groups, and a double cover.

1.3 Theorem. The group L is isomorphic to the fundamental group of the com-
plement of the link illustrated in Figure 2.

Proof. We consider the Wirtinger presentation of the link diagram in Figure 2.
Using the oriented generators labeling the overpasses we obtain the presentation〈

a, b, c, d, e, f | ba = ad, cd = de, fe = ef
ab = ba, dc = cb, ef = fc

〉
.

We first remove the relation dc = cb. Now observe that because ab = ba, the
relation ba = ad is equivalent to the relation b = d. Likewise, because fe = ef ,
the relation ef = fc is equivalent to e = c. So we obtain the following simpler
presentation: 〈

a, b, c, d, e, f | b = d, cd = de, fe = ef
ab = ba, e = c

〉
.
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Figure 2.

Next we remove the generator d and the relation b = d, and we remove the generator
c and the relation e = c, to obtain:〈

a, b, e, f | eb = be, fe = ef
ab = ba,

〉
.

The resulting presentation is obviously isomorphic to the presentation for L given
above, using the map a 7→ s, b 7→ x, e 7→ r, f 7→ y.

1.4 Theorem. L is a subgroup of K.

Proof. Consider the homomorphism K → Z induced by j 7→ 0, k 7→ 0, t 7→ 1.
Examination of the covering space shows that the kernel has presentation 〈ji, ki |
[ji, ki], ji = ki+1 (i ∈ Z)〉 which is equivalent to 〈ji | [ji, ji+1] (i ∈ Z)〉. The group
L is obviously a subgroup of this kernel.

2. Amalgamated free products

2.1 Theorem. Consider a non-trivial amalgamated free product of the form G =
A∗EB, where each of A and B is virtually the direct product of a free group and an
infinite cyclic group, and E is virtually cyclic. Then the following are equivalent:

(1) G is subgroup separable.
(2) G is virtually Fq × Z.
(3) E has a cyclic subgroup of finite index which is normal in A and B (and thus

G).
(4) L is not a subgroup of G.

Before proceeding with the proof of Theorem 2.1, we mention the following
generalization:

2.2 Remark: Graphs of groups. One can show similarly that a finite graph of groups
with virtually Fm × Z vertex groups and virtually cyclic edge groups is subgroup
separable if and only if it is virtually Fq × Z. The proof is similar, except that in
this case one also uses the fact that if the group is subgroup separable, then there
is no relation of the form (xn)g = xm where x has infinite order and n 6= ±m.

(3)⇒ (2). Let N denote a cyclic subgroup of finite index of E which is normal in
A and B. Consider the exact sequence

1→ N → A ∗E B → A/N ∗E/N B/N → 1.

Since A is virtually Fn×Z, A/N is virtually free because (Fn×Z)/
(
(Fn×Z)∩N

)
is virtually free, and it is of finite index in A/N . Similarly, B/N is virtually free
and E/N is finite and so we see that G/N is virtually free.
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Let F denote a free subgroup of finite index inG/N , and let J denote its preimage
in G. Then we have a short exact sequence

1→ N ∩ J → J → F.

Since F is free, we can express J as a semidirect product J = (N ∩ J)n F .
Since N ∩ J is cyclic, there is a subgroup F ′ of index ≤ 2 in F which centralizes

N ∩ J . Thus (N ∩ J) × F ′ ⊂ (N ∩ J) n F ⊂ G is the desired direct product
subgroup.

(2)⇒ (1). It is sufficient to show that F2 × Z is subgroup separable, and this was
proven in [AG] or [S]. Alternately, the group 〈a, b | a3 = b3〉 is subgroup separable
by the result of [BBS], and it is easily seen to contain F2×Z as a subgroup. Indeed,
this follows from (3)⇒ (2).

(1)⇒ (4). A subgroup of a subgroup separable group is subgroup separable, but L
is not subgroup separable by theorem 1.2.

(4)⇒ (3). We will argue by contradiction. Without loss of generality we assume
that E does not have a cyclic subgroup of finite index which is normal in A.

By hypothesis, A is virtually Fn × Z, and now the argument breaks down into
cases according to the value of n. We need not consider the case n = 0 because
we have assumed that E does not have a cyclic subgroup of finite index which is
normal in A. In case n = 1 we will show that the group K embeds in A ∗E B,
and so it is not subgroup separable. In case n ≥ 2, we will show that the group L
embeds in A ∗E B and so it is not subgroup separable.

Let c generate an infinite cyclic subgroup of E. We will use the fact that there
exists m > 0 such that 〈cm〉 is normalized by some element b ∈ B−E. This is easy
to prove by using the fact that E is a proper subgroup of B, and that B is virtually
Fm × Z.

In case n = 1, choose a normal subgroup of finite index T ⊂ A such that
T ∼= Z × Z, and T ∩E ⊂ 〈cm〉. Let e denote a generator of T ∩ E. By hypothesis,
T ∩ E is not normal in A and so we may choose an element a ∈ A such that
ea /∈ T ∩ E. Observe that eba and e form a basis for a rank 2 subgroup of T . If
we think of K as an HNN extension with stable letter t, then it follows from the
normal form theorem that K embeds in G using the homomorphism induced by
j 7→ e, k 7→ eba, t 7→ ba. Since, by Theorem 1.4, L embeds in K, we see that L
embeds in G.

In case n > 1 then, without loss of generality, we choose a subgroup of finite
index Fn ×Z of A, such that (Fn × Z)∩E is contained in 〈cm〉. Let (Fn × Z)∩E
be generated by (w, z) ∈ Fn × Z. Observe that w ∈ Fn is not trivial, because if it
were trivial, then (Fn ×Z)∩E would be a subgroup of finite index of the center of
Fn × Z, and thus normal in A.

Choose an element (u, z) ∈ Fn ×Z such that (u, z) and (w, z) form a basis for a
free group of rank 2.

If we think of L as an HNN extension with stable letter s, then it follows from
the normal form theorem that L embeds in G using the map x 7→ (w, z), y 7→
(u, z), r 7→ (1Fn , 1), s 7→ b(1Fn , 1)b−1.
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3. Knot groups that aren’t subgroup separable

We will need the following result in order to apply Theorem 2.1 to the case of
the sum of torus knots in Theorem 3.2 below.

3.1 Lemma. Let T = Tp,q be a non-trivial torus knot complement, and let m
denote a meridianal curve in T . Then 〈m〉 does not have a subgroup of finite index
which is normal in π1T .

Proof. π1T can be presented as 〈a, b | ap = bq〉, where, because T is non-trivial, we
may assume that p > q > 1 and GCD(p, q) = 1. By Proposition 3.28 of [BZ], the
meridianal curve is represented by the element m = aubv where pv + qu = 1.

Now, consider the homomorphism

〈a, b | apb−q〉 → 〈ā, b̄ | āp, b̄q〉.
Observe that since p > q > 1, the image group is virtually free of rank ≥ 2, so there
are no normal infinite cyclic subgroups. Note that it follows from pv+ qu = 1 that
p 6 |u and q 6 |v. Consequently, both āu and b̄v are non-trivial, and so, by the normal
form theorem, the image āub̄v of m has infinite order. Consequently no power of the
image of m generates a normal subgroup in the quotient, and therefore no power
of m generates a normal subgroup in π1T .

3.2 Theorem. The sum of two non-trivial torus knots is not subgroup-separable.

Proof. Let T and T ′ denote the torus knot complements. Let m and m′ denote
elements of π1T and π1T

′ represented by appropriate meridianal curves of T and T ′

respectively. Now the fundamental group of the connected sum T#T ′ is isomorphic
to π1T ∗m=m′ π1T

′. Since a torus knot group is virtually Fn×Z (from Theorem 2.1
above or [BZ]), it follows from Theorem 2.1 that π1(T#T ′) is subgroup separable
if and only if 〈m〉 and 〈m′〉 have subgroups of finite index which are normal in T
and T ′ respectively. But by Lemma 3.1 this is true only if T and T ′ are trivial
links.

3.3 Remark: Other connected sums. In fact, a similar argument shows that the con-
nected sum of a non-trivial torus knot and any non-trivial knot has a non subgroup-
separable π1.

Since the square knot is the connected sum of two trefoil knots, we obtain:

3.4 Corollary. The fundamental group of the square knot complement is not sub-
group separable.

4. Graph manifolds

We refer the reader to [RW] and the references therein for information about
Seifert manifolds and graph manifolds.

Examples of graph manifolds whose fundamental groups aren’t subgroup sepa-
rable are due to [RW]. The point of the following theorem is that the failure of
the subgroup separability in this case can be linked to the presence of a subgroup
isomorphic to L, where L is the link group of section 1.

4.1 Lemma. Consider the group G = (Fm × Z) ∗T (Fn × Z), where n,m ≥ 2,
and where the amalgamated subgroup T is a maximal Z × Z subgroup in each fac-
tor. Suppose that the embedding of the amalgamated subgroup does not identify the
centers of the factors. Then there is an embedding L→ G.
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Proof. Without loss of generality, suppose that the non-central element (w, z) of
the left factor Fm × Z is identified with the generator (1F , 1) of the center of the
right factor Fn × Z.

Now, using the fact that m ≥ 2, we can choose a subgroup R ⊂ Fm×Z such that
R ∼= Z×Z and R∩T = 〈(1F , 1)〉. Finally, observe that because of the normal form
theorem, the obvious map (Fm × Z) ∗(w,z)=(1F ,1) R→ (Fm × Z) ∗T (Fn × Z) is an
inclusion. But (Fm×Z) ∗(w,z)=(1F ,1)R satisfies the hypothesis of Theorem 2.1 and
thus contains L as a subgroup, and consequently so does (Fm×Z)∗T (Fn×Z).

4.2 Theorem. Let M be a compact graph manifold. Then the following are equiv-
alent:

(1) π1M is subgroup separable.
(2) M is a Seifert manifold, or M is a torus bundle over S1, or M is the union of

two twisted I-bundles over the Klein bottle, glued together along their bound-
aries.

(3) There is no embedding of L in π1M .

(2)⇒ (1). The fact that the fundamental group of a Seifert fibered 3-manifold is
subgroup separable was proved by Scott in [S]. For a torus bundle over S1 we first
observe that its fundamental group G is a semidirect product A o N , where A is
isomorphic to Z × Z and N is isomorphic to Z. Therefore G is polycyclic, and
so G is subgroup separable because Malćev proved that every polycyclic group is
subgroup separable (see 5.4.16 of [Rob]). If M is a union of two twisted I-bundles
over the Klein bottle, then it is double covered by a torus bundle over S1, and
we are reduced to the previous case, since finite extensions of subgroup separable
groups are themselves subgroup separable.

(1)⇒ (3). By Theorem 1.2 above, L is not subgroup separable, and therefore π1M
is not subgroup separable.

(3)⇒ (2). Suppose that M is a graph manifold and there is no embedding of L in
π1(M). Without loss of generality we may assume that M is decomposed minimally
as a graph manifold, i.e., that no two adjacent vertex submanifolds have a union
which may be Seifert fibered.

If the underlying graph has terminal vertices which are fibered over a flat orbifold,
then we may take a double cover of the manifold in which each of them is covered
by the direct product of a circle and an annulus. The remaining components each
lift to two components of degree one. The underlying graph of the double cover now
has vertices isomorphic to T 2×I, one for each of the original terminal vertices, and
these all have valency two, so are replaced by edges in a minimal decomposition.
We introduce no new terminal vertices in this process, so the double cover has no
terminal vertices fibered over a flat orbifold.

Now suppose that the double cover is either a torus bundle over S1 or a Seifert
fibered space. In the first case it is easy to see that either M is itself a torus bundle,
or it is double covered by a torus bundle and is a union of two twisted I-bundles
over the Klein bottle. In the case when the double cover is Seifert fibered it is
easy to see that π1(M) contains a central, infinite cyclic subgroup and we may
appeal to Gabai Casson Jungreis, wherein it is shown that any compact irreducible
3-manifold whose fundamental group contains a normal, infinite cyclic subgroup is
Seifert fibered. Hence it is sufficient to show that the double cover is indeed either
a Seifert fiber space or a torus bundle.
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Recall that we are now assuming that the minimal graph decomposition we are
using for our manifold has no terminal vertices whose base space is a flat orbifold.
We will consider first the case when the minimal graph decomposition has at least
two vertex manifolds. In this case let M1, M2 be adjacent vertex manifolds in the
minimal decomposition. Let M ′ denote the graph manifold obtained by glueing
M1 and M2 along a single torus boundary component so that the glueing agrees
with the corresponding identification in M . The result is homeomorphic to an
incompressible submanifold of M , so its fundamental group injects in π1(M). In
particular there is no embedding of L in π1(M ′).

Since the graph decomposition of M is minimal, neither component, M1 nor M2,
is homeomorphic to T 2×I, and since it has no terminal vertex spaces fibered over a
flat orbifold, neither is fibered over any flat orbifold. It follows that both are Seifert
fibered over a surface of negative Euler characteristic, and so each Mi has a finite
cover which is homeomorphic to a product M ′i = Σi × S1, i = 1, 2, where Σ′i is also
a surface of negative Euler characteristic, and which contains a degree 1 component
of the pre-image of the identified torus. A standard argument shows that glueing
the two manifolds M ′i along this lift, respecting the glueing induced from M ′, gives
a manifold M ′′ homeomorphic to a compact core for a cover of M ′. In particular
π1(M ′′) contains no copy of L. But π1(M ′′) is an amalgamated free product of two
products Fi × Z, where Fi = π1(Σ′i) is free of rank at least 2. Now by Lemma 4.1,
we see that the identification of the two boundary tori in M ′′ must identify the
centers of π1(M ′1) and π1(M ′2), which are the infinite cyclic subgroups carried by
the fibers of M ′′. Since these are the lifts of the fibers in M ′, it also follows that
the glueing of the boundary tori in M ′ identifies the normal cyclic subgroup carried
by its fibers so we can homotop the glueing map to identify the fibers to see that
M ′ may itself be Seifert fibered. But this contradicts the fact that M ′ is a union
of two vertex manifolds in a minimal graph decomposition of M , so the minimal
graph decomposition of M must have had only one vertex.

Now suppose that a minimal graph decomposition of M has only one vertex
and n ≥ 2 edges. In this case the vertex manifold has at least four boundary
components, and so it has a finite cover homeomorphic to a product Σ× S1 where
Σ is a surface of strictly negative Euler characteristic, so its fundamental group is
Fn × Z for some n ≥ 2. Now we can construct a double cover of M by splitting it
open along one of the non-separating tori, and glueing two copies of the result along
their boundaries to respect the original identifications. The resulting manifold M ′

has a graph manifold decomposition with two vertices and 2n edges, and it is not
too hard to see that this is minimal. It now follows from the previous case that
π1(M ′) must contain L as a subgroup.

Finally there are two cases to consider: when the minimal graph decomposition
of M consists of a single vertex manifold and no edge manifolds, in which case M
is Seifert fibered, and when the minimal graph decomposition of M consists of a
single vertex manifold homeomorphic to T 2× I, and a single edge manifold T 2× I.
In this latter case M is a torus bundle over S1, as required.
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