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ON CONJUGACY SEPARABILITY OF FUNDAMENTAL GROUPS
OF GRAPHS OF GROUPS

M. SHIRVANI

ABSTRACT. A complete determination of when the elements of a fundamental
group of a (countable) graph of profinite groups are conjugacy distinguished is
given. By embedding an arbitrary fundamental group G into one with profinite
vertex groups and making use of the above result, questions on conjugacy sepa-
rability of G can be reduced to the solution of equations in the vertex groups
of G.

1. INTRODUCTION

An element g of a group G is said to be conjugacy distinguished (or con-
jugacy separable) in G if for every element /& of G not conjugate to g there
exists N <y G such that gN and AN are nonconjugate in G/N. A group is
conjugacy separable if all its elements are conjugacy distinguished. The best-
known classes of conjugacy separable groups are polycyclic-by-finite groups [10],
profinite groups [11], free-by-finite groups [5], and certain Fuchsian groups [19].
Results are also known on conjugacy separability of certain amalgamated free
products (e.g., of free groups [18]), and some one-relator groups with torsion
[1]. In the last mentioned paper the authors ask whether every one-relator group
with torsion is conjugacy separable. More generally, one can ask when the fun-
damental group of a graph of groups is conjugacy separable.

In order to investigate these problems one might adopt the following strategy:
let G be a residually finite group, with G its profinite completlon (i.e., G is the
inverse limit of the system of finite images G/N of G). It is easily shown that
if 8, h € G are conjugate in every finite image of G, then they are conjugate
in G,and so G is conjugacy separable if and only if whenever g, h € G are
conjugate in G then they are conjugate in G. Unfortunately, if G is a non-
trivial fundamental group of a graph of groups, then G is still not sufficiently
well understood (cf. [7, 20]) to allow for the successful completion of the last
step. A complete answer can be given when the vertex groups are themselves
profinite groups. This, in turn, allows necessary and sufficient conditions to be
derived for the general case.

Let X be a connected graph, let & = {4, x € VX, H,, e € EX} bea
graph of groups over X, and let G = (¥, X) be the fundamental group of
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this graph of groups (see [2, 4], or [14] for the relevant definitions and prop-
erties). We assume that G is residually finite, and denote by /fx the profi-
nite completion of the vertex group A, with respect to the induced topology
{AxnM: M a; G}. Let H, denote the topological closure of H, in /f,-(e) .
The edge isomorphisms can be extended to these closures (cf. Lemma 3.1). The
result is a graph of groups over X with fundamental group G* (for details see
§3). The obvious maps A4, — A, extend to an embedding of G into G*+. If
we denote the conjugacy class of g in G by g% and MasG g%M by clg(g%)),
then we have:

Theorem 3.4. For every g € G we have clg(g%) = clc;+(gG+) nG.

The point of this result is that most elements of Gt turn out to be conjugacy
distinguished (i.e, clg+(g%") = g¢"). If g € G is such an element, then g is
conjugacy distinguished in G if and only if g NG = g%. This condition
is quite tractable, gnd amounts to whether certain equations hold in the vertex
groups A, and A,. Assuming that we have enough information about the
vertex groups and their completions, the conjugacy separability of G can be

decided.
To state the results for G*, let Y be a maximal subtree of X, and write

At = (/fx: x € VX) < G*. Then A" is the fundamental group of the graph of
groups & restricted to Y, and G* is an HNN-extension with base group A4*.
As a consequence of 4.4, 4.6, and 4.9 below we get

Theorem A. Let ae€ A*.

(i) If either no conjugate of a belongs to a vertex group, or X is locally finite,
a e AAx, and no Ex-conjugate of a belongs to an edge subgroup, then a is
conjugacy distinguished in A" .

(i) Assume that X is locally finite, let D = ,cpx H,, and suppose a €
D belongs to only a finite number of edge subgroups. Then a is conjugacy
distinguished in A* if and only if there exist vertices xi, ..., Xm of Y such
that Dna?t =Dn {a®m:q; € Ay}. O

For elements of Gt we obtain from 5.1, 5.3, 5.6, and 5.8

Theorem B. (i) All elements of G\ A", and all elements of A* satisfying con-
dition (i) of Theorem A, are conjugacy distinguished in G* . .

(ii) Assume that X is locally finite, and let D' = U,epy\py He and C =
Uxe VX Ax . +

Then h € D' is conjugacy distinguished in G* if and only if hGA NC isa
union of a finite number of sets of the form CN{h8: g € Axte! --- Ay, t& Ax,,, »
for some e; € EX\EY, ¢;==1, and x; € VX}.

This in particular settles the problem for the case when the vertex groups are

profinite, since such a G can be residually finite if and only if G = G*, by 3.3
below.

2. NOTATION

Let X be a directed connected graph, £ a graph of groups {4.: x €
VX; H,: e e EX with isomorphisms 6, from H, < A;,) to Hz < Aye)} oOver
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X ,and G =m (¥, X) the fundamental group of (£, X) relative to the choice
of a fixed maximal subtree Y (see [2, 4], or [14] for details). It is well known
that if 4 =7(Z|y,Y) then the obvious map of 4 to (Ax: x € VY)C G is
an isomorphism, and G is an HNN-extension with base group 4 and stable
letters ¢, corresponding to the edges ¢ € EX\EY :

G=(A,t;:t;'ht, =hb, forall h e H,, e e EX\EY).

In the notation of [16] let I = I(¥, X) denote the set of all sequences (Py)xeyx
satisfying the following conditions: (a) Py, < 4, and there exists an integer
m = m(P) suchthat |4y : Px| < m forall x € VX, (b) (Py)NH,)0, = PyeyNHz
forall e € EX. For P,Q € I we write P < Q if P, C Q, for all x.
For P € I let &p denote the graph of groups {A./Px, HeP;e)/Pie), induced
isomorphisms 6, p}, and let Gp = 7,(%p, X). The projections A, — Ay /Py
clearly extend to an epimorphism 7p: G — Gp. It is well known that Gp
is free-by-finite (e.g., [14, Exercise 2 on p. 123]). Also note that if M <y G
then P = (M NAy)xeyx € I, and G/M is a homomorphic image of Gp. In
particular, this implies that if G is residually finite then (., P, = (1) for all
X € VX . We assume this from now on. For g € G write g¢ for the conjugacy
classof g in G.

Proposition 2.1. Let g € G. Then (g 8%M = Npe; g%kernp. In particu-
lar, Npra,6 M = Nperkernp.

Proof. If M <;G induces P € I then M D kermp,so g5M D Np g%kernp.
Conversely, given P €1 let P1 ={M <, G: MNA, = P, forall x € VX}.
Now by a theorem of Dyer [5], Gp is conjugacy separable, which implies that

(gnp)% = () (gnp)*Mnp= [ (g°M)7p,
MePt MeP?

whence g@kernp = cp; €M . The result follows. (For the final part take
g=1) O

3. PROFINITE CLOSURES

It is evident that if P, Q € I, then PN Q = (Px N Qx)xerx also belongs
to I. We refer to the topology on A, with {P,: P € I} as a fundamental
system of open neighbourhoods of the identity as the I-topology. For each x
let A, = 1&“ per (Ax/Py) , the inverse limit being formed relative to the partial

ordeAr < of I introduced above. Let H, denote the topological closure of H,
in A4, . We have
Lemma 3.1. For every e € EX, the iso_morpﬁism_ee: H, - H; extends to an
isomorphism 0.: H, — Hy such that (He N\ Pje))0, = Hz N Py .
Proof. For each P € I there are canonical isomorphisms

He/(HeNPie)) 2 HePie)/Pite) = HePite)/ Pice)

= H,/(He N Pje)) = He/He N Pyey

and H, is naturally isomorphic to the inverse limit !ﬂl per (He/H.NPy)) [12].
The isomorphisms induced by ¢, on the quotients H,/H,N P, are compatible
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with the inverse limit structure, so the existence of 6, follows. (If one thinks
of the inverse limit A, as a subgroup of the cartesian product [icrx(Ax/Px),
then the image of the element s = (hpnp) € H, is h0, = (hpf.np) € Hz.) The
intersection property of 6, is also trivial from the construction. O

Thus we have a graph of groups £+ = {//fo, H,,0,) over X. Let G* =
n1(Z*, X). The natural embeddings 4, — A4, extend to a homomorphism
1: G — G* . The next few results exploit the relationship between G+ and the
residual properties of G .

Lemma 3.2. Let G, G*, and u be as above. Then G* is residually finite and
ker = prq,6 M -
Proof. The edge subgroups of G+ are closed in their vertex groups by definition,

and 3.1 implies that if P € I(¥) then P = (P,) € I(¥*). The residual
finiteness of G* is therefore a consequence of the theorem of [16]. For the

second part let P € I, and consider the following diagram with exact top row:

kery — G —5— G*

| |=

Gp —2 G%

The diagram is easily seen to commute, and A, /P, = A, /P, implies that up
is an isomorphism. Then 1 = (keru)uny = (ker u)m,up implies that keru C
kernp forall P,so keru C\pkernp = ﬂquGM by 2.1. On the other hand,
G/kerpu is a subgroup of G*; being residually finite, the reverse inclusion
follows. 0O

Before proceeding further we mention that, in general, profinite closedness
of the edge subgroups in their vertex groups is not necessary for the residual
finiteness of G (cf. [15, 17]). In the case of profinite vertex groups, however,
we have the following result.

Corollary 3.3. Let G = n|(Z, X), and assume that Ay = yanel (Ax/Pyx) for
all x e VX. Then G is residually finite if and only if every edge subgroup is
profinitely closed in its vertex group.

Proof. Suppose there exists an element a € H,\H, for some ¢ € EX. If
e is an edge in the maximal subtree Y let g = a‘l(aae); otherwise let g =
a='t,(af,)t.. Then g # 1 in G, while gu=1,s0 G is not residually finite by
3.2. The converse follows from 3.2 and the fact that when the edge subgroups
are closed we have G =G*. O

If S is a subset of a group H , write clp(S) for (. 5z SM.

Theorem 3.4. Let G, G, and 1 be as above. If g € G then clg(g%)u =
clg+((gm) ) NGu.

We are not assuming that u is injective.
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Proof. Let S = clg(g%) = Npe; g%kernp (by 2.1). Then using ker u C kermp
(cf. the proof of 3.2) we have

Su= () (g%kernp)u = () (g1)%* (ker zp)u.
Pel Pel

Now it is easy to see from the commutative diagram in the proof of 3.2 and
the fact that up is an isomorphism, that (kernp)u = kernj N Gu. The proof
of 2.1 applies without change to show that clg+ (¥%") = Npc; »¢ kernp for all
y € G*. Thus

Su= () (gw)(kernf N Gu) = () (gn) ™ kernf NG,
Pel Pel

which is certainly contained in (), ,(gu)G+ kern} N Gu. Conversely, suppose
we have an element zu € () PG,(g,u)G+ kern} , where z € G. Then for each
P there exists wp € G* such that zun} = (wp'(gu)wp)np. Since pp is
an isomorphism, there exists up € G such that upmpup = wpny . The above
equation now becomes zzpup = (u;lgup)np,up , and since up is injective we
obtain z € Np; g%kernp =S. We have now shown that

Su=(\(ew)kernf nGu C (\(gw)® kernf N Gu C Sy,
Pel Pel

as required. 0O

Since conjugacy separable groups are residually finite, we henceforth assume
that keru = (1), and identify G with Gu. The statement of 3.4 can then
be written more simply as clg(g%) = clg+(g%") N G. What is the point of this
result? Let g and g’ be elements of G which are conjugate in every finite
image of G. By 2.1 this means that for every P € I there exists wp € G
such that g'zp = (w;‘gwp)np , and at first glance it is conceivable that the
“length” of the elements wp (in whatever sense) might be unbounded. Now if
we have clg+(g%") = g9, then 3.4 implies that g’ € clg(g%) = g% NG, so
g’ =wlgw, where w € G*. This, of course, means that the above wp can
be chosen to have bounded length. It turns out that conjugacy separability is
commonplace for elements of G*. Before we proceed with this, we state the
following, which does not require keru = (1).

Corollary 3.5. If g is conjugacy distinguished in G, then
(gw)® NnGu=g.
Proof. For if (gu)® NGu=Su, where S # g%, then
g% = clg(g9)n = clo+ ((g1) ) N Gu 2 ()% NGu =Sy,
and so clg(g¢)D2SDg%. O

It is necessary to study conjugacy separability of the base group of G* first.
The next section is devoted to the study of A* = n;(Z|y,Y), where Y isa
maximal subtree of X .
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4. CONJUGACY SEPARABILITY OF A+
We begin with the following general fact.
Proposition 4.1. Let & be a graph of groups over X , and assume that

(1) () HePiey=H, forallecEX,
Pel

with G = n(¥, X). Let Y be a connected subgraph of X, and put G(Y) =
(Ax: x € VY) < G. Then G(Y) = Nper G(Y)kernp. If Y is finite then
G(Y)= ﬂquG G(Y)M.

Proof. Fix a vertex xo € V'Y, and for each edge e€ EX let T, > 1 be a left
transversal of H, in A, . Then every element of G is uniquely represented by
a normal word ¢, ---t,a, where a €Ay, ti€T, for 1<i<n, (e,..., en)
is a closed path at Xo,and if e; =2, ; then t; # 1 [8, Corollary 1]. Moreover,
the proof shows that the elements of G(Y) are represented by paths that entirely
belong to Y. Now condition (1) means that, given any element g =¢,---t,a
in normal form in G, we can find P € I such that (timp)--- (thmp)(anp) is
the normal form of gnp in Gp (relative to suitable transversals of the H,mp
in the A;)7p). In particular, if g € G\G(Y) then g is represented by a path
that goes outside Y, and since gnp is represented by the same path, we have
gnp ¢ Gp(Y) = (Axmp: x € VY) = G(Y)np. The first part follows.

Now suppose that Y is finite. Then for any P € I we have the finitely
generated subgroup G(Y)7p of the free-by-finite group Gp. Such subgroups
are profinitely closed (e.g., [2, p. 229]). This evidently means that G(Y) ker np =
Narepr G(Y)M , and the second part follows (cf. the proof of 2.1). O

To simplify the notation let Y be a tree, & a graph of groups over Y, and
A=m(Z,Y). Also write C =,y 4y and D = Uecry He , the subsets of
vertex elements and edge elements respectively in A .

Proposition 4.2. Let g be an element of A. Then the Jollowing assertions are
true:

(i) If g € D, then there exists a subtree Y, of Y such that g € H, if and
only if e is an edge of Y, .

(ii) If g ¢ D, then there exists a FINITE subtree Y, of Y such that g €
A(Yg), and if Z is any subtree of Y with g € A(Z), then Y,CZ.

Proof. (i) Let Y, consist of all vertices x of Y such that g € Ay, and all
geodesics between them. If g € 4, N Ay, and p is the Y-geodesic from x to
y, then g belongs to every vertex group of p (since adjacent vertex groups
in A generate their amalgamated free product). In other words, g belongs to
every vertex group of Y,. Moreover, H, = Aiey N Aye) for any edge e, so
8 € H, if and only if i(e) and t(e) belong to Y,.

(ii) Among all subtrees Z with g € A(Z ) pick one with the fewest number of
vertices, and call it Y, . Fix a vertex x; in Y, . Then the normal form ¢, --- t,a
of g can be represented by a closed path p at xp, with p entirely contained in
Y, (since g € A(Y;)). Now let Z be a subtree such that g € A(Z) . Suppose
first that Y, = {xo}. If xo ¢ VZ then g € Ax, N A(Z) must be an edge
element (consider the geodesic from x, to A(Z)), a contradiction. So in this
case Y, C Z.
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There remains the case where Y, has more than one vertex. If Z contains
every end vertex of Y, then Y, C Z, so suppose Z does not contain some end
vertex x of Y, , and let e be the edge of Y, that ends at x . Now the path p
must visit x at least once (since otherwise g € A(Y,\{e, x})), and if ¢; € A,
then ¢; # 1 (since p looks like..., e, x, €, ... at x, and we have a normal
form). If Z and Y, were disjoint then g € A(Z)N A(Y,) would be an edge
element, which is not the case. Thus Z' = Z U Y,\{e, x} is a subtree of Y
such that g € A(Z’). If xo ison Z’ then we have the immediate contradiction
that g can be represented in normal form by a path ¢ in Z’, and g # p since
x ison p but not on g. So we must have xo = x. But since Z and Y,
are not disjoint we can always choose xo to be a common vertex. This final
contradiction shows that Z 2 Y, , as required. O

To define the notion of a reduced form for elements of 4 we need a defini-
tion. Let A’ be a nonempty subtree of a finite tree A. By a reduction process
R from A to A’ we mean a sequence A;, ..., A, of subtrees of A such that
A=A, A, =A",and A;,; is obtained from A; by deleting an end vertex Xx;
(for i=1,..., m~1). Welet y; be the vertex of A; adjacent to x;, so when
A CY we have

A(A) = (A(Ai1) * Ay,: Hypy = Hyy, via 6,,,),  i=1,...,m—1.

Let A D A’ be finite subtrees of Y ,and R ={A;, ..., A,} areduction process
from A to A’. Say g is reduced (resp. cyclically reduced) relative to R if
either g € A(A’) or g € A(A;)\A(A;;1) for some i < m — 1, and then g is
reduced (resp. cyclically reduced) in the amalgamated free product A(A;) of
A(Aiy1) and Ay, . Every element of 4(A) can be written in reduced form, and
is conjugate, in A(A), to a cyclically reduced element of A(A). Note that an
elementm may be cyclically reduced relative to one reduction process, but not
another.

Lemma 4.3. Assume that (1) holds. Let g be a nonvertex element of A such
that g is cyclically reduced relative to some reduction process from Yy to a single

vertex. Then cly(g1) = Ungd, where each g, € A(Yy).

Proof. There exists Py € I such that Yg,, =Y, forall P C P,. To begin with,
we can choose P; such that gmp is cyclically reduced in 4(Yg)mp relative to
R, for all P C P;. This is because (1) can be used to ensure that the finitely
many vertex elements in the cyclically reduced form of g are excluded from
the finitely many edge subgroups encountered by R. In particular, if P C P,
then gmp is not an edge element of Amp. For such P we have Yg,, C Y,
(since gmp € A(Yg)np), and if Q C P then Yz, D Ygn, . Since Y, is finite,
there exists a subtree A C Y, and Py C P; such that for all P C P, we have
Yen, = A. Then g € Npcp A(A)kermp = A(A) by 4.1, and then A = Y, by
definition of Y. -

Now suppose P C Fy. Then gnp is a cyclically reduced nonvertex element
of A(Y,)mp, so the conjugacy theorem for amalgamated free products [9] im-
plies that the conjugacy class of gnp in A(Y,)mp contains no vertex elements.
If AD Y, is a finite subtree then the conjugacy class of gnp in A(A)mp con-
tains no vertex elements (consider a reduction process from A to Y,). Now
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let g’ € cly(g?), and let A D Y, be a finite subtree with g’ € A(A). Let
R ={A,, ..., An} be a reduction process from A to Y,. Replacing g’ by a
conjugate in A(A) we may assume that g’ is cyclically reduced relative to R,
and we may choose P, such that g’mp is cyclically reduced for all P C Py. If
P C Py then gnp has minimal length in its A(A)zp-conjugacy class, and be-
longs to A(A;)np\H,,x, np . The conjugacy theorem for amalgamated free prod-
ucts [9] implies that g'mp € A(A;)np . Continuing in this way we finally obtain
g'mp € A(Yy)np, whence g' € (\pcp A(Yg)kernp = A(Yy), as required. O

We can now prove

Theorem 4.4. Let g be a nonvertex element of A such that g is cyclically
reduced relative to some reduction process R from Yg to a vertex. Assume that
(1) holds and that Hy,,, is compact in the I-topology (where x\y, is the first
edge deleted in the reduction process). Then g is conjugacy distinguished in A .

Proof. By 4.3 we have cly(g?) = J g2, where each g, € A(Y,), and we may
assume that each g, is cycllcally reduced relative to R. Fix «, and choose F,
such that for all P C Py, gnp, and g,7mp are cyclically reduced in A(Y,)np
relative to R. The conjugacy theorem for amalgamated free products can now
be applied to deduce that g,7p is conjugate to some cyclic permutation of gzp,
via an element of H,,, mp. Replacing g by a cyclic permutation if necessary
we have g,mp = (h;'ghp)np for all P C Py, where hp € Hy,,, . Consider the
function f: Hy,,, — A(Yg) given by f(h) = g;'h~'gh. With the appropriate
profinitely topologies it is easy to see that f is continuous and kerzmp N A(Y,)
is closed in A(Y,). Thus for each P C Py, f~!(kerzp) is a nonempty closed
subset of Hy,, , and P C Q implies that f~!(kermp) C f~!(kerzmp), so we
have the finite intersection property. If

he () f\(kermp) = 7 (ﬂ kernp) = f~1(1),

PCPy PCPh
then g;'h~'gh=1,s0 g, € g4. The result follows. O

The next lemma collects the information we need on conjugacy of edge and
vertex elements.

Lemma 4.5. Let C =), cpy Ax and D =, cpy He .

(i) Let h € D, and let a € C be such that h* € C. Then a € Ay for some

X € VYh

(i) Let a € Ax, b € Ay, and a® € C. Then there exists a vertex z such that
a,beA,.

(iii) Let h € D, and w be a nonvertex element of A such that h* € C. Let
w=ay---a, bethereduced form of w (relative to some reduction process R of
Yy), where the a; € C. Then h% €D for 1 <i<r-1.

(iv) Let a € A, be such that a*>ND =@. Then a*ND =@, and a’NC =
ats .

Proof. (i) Choose x as close to Y, as possible subject to a € Ay, and get
a contradiction to 4% € C by assuming that x ¢ V'Y, and considering the
geodesic from x to Y.
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(ii) Similar to (i): choose x; and y; as close to each other as possible (on
the geodesic joining x and y) subject to a € Ay, and b € 4,, .

(iii) First note that Y,NY,, # &, for otherwise a consideration of the geodesic
from Y, to Y, gives the contradiction A¥ ¢ C. Thus a = h¥ € A(Y,,). The
proof is by induction on r, where w = a; ---a,. Consider the first step in the
reduction process: if A% is not an edge element then A¥ is reduced as written
(in the amalgamated free product of A4(A;) and Ay,) and so cannot be a vertex
element. Therefore 4, = h** € D, and a = h{*"* . The result follows by
induction on r (using part (i)).

(iv) Suppose a¥ = h € D for some nonvertex element w = a; ---a,, in re-
duced form. Then A% %' =g € C, and by part (iii) we get a® = he et e
D. So a’ND # @ implies that a® € D for some vertex element 5. By
part (ii), a and b must belong to the same vertex group, which has to be A,
since a belongs to no other vertex group. But now we have a**ND # @, a
contradiction. It follows that ¢“ND =o.

For the second part let b = a* € 4, , and choose y as close to x as possible
subject to b € 4, . Claim that y = x. For if not, then Y, # {x}, and we have
two cases to consider:

Case 1. x ¢ VY, . Then there exists a finite subtree A D Y,, and an edge yx
with y € VA. Now a € A\Hyy, w € A(A), and b = w~law € A(A) (as
A has to contain y because b = a¥ € A(AU{x}) and y # x). This forces
w € Hyx = Hyy, and a¥ € A(A) N Ay = Hy, , contradicting a’ND =0 .

Case 2. x € V'Y, . Let R = {A, ..., A,} be a reduction process from Y,
to a point, such that the first vertex deleted is x; # x (this can be done since
Yw # {x}). Write w = a;---a, in reduced form relative to R. Then b =
a,“~~~a1‘laa1--~a, € A, C A(A3) U A(x1), so we must have a; € 4, and
a® € Hy, x, (since r > 2). This is a contradiction.

We have now shown that b = a¥ € 4, . An argument similar to that in Case
2 now shows that w € 4., so a4 N C C a4~ , are required. O

We can now prove

Theorem 4.6. Let g € A, be such that g~ ND = @. Assume that X is locally
finite, that every edge subgroup of A is compact in the I-topology, and that
Nper 84 Px = g4 . Then g is conjugacy distinguished in A .

Proof. If cly(g?) contains a nonvertex cyclically reduced element g, then by
4.4 we have cly(g4) = cl(gf) = g4, so g1 = g¢! = clu(g”) and we are done.
(Note that condition (1) is a consequence of the compactness assumption, so 4.4
is applicable.) We may therefore suppose that cl,(g4) = Ja{ , where each a; is
a vertex elementof 4. Let S =J i(e)=x H, , and note that S is compact since X
is locally finite. Put Tp = g%mpNSn, . We claim that there exists P, such that
Tp = forall P C Py. Suppose not. Note that Q C P implies that Tp maps
into Tp under the obvious map (from Ay to Ap), soif Tp # & then we have
an inverse system of nonempty finite sets. Let (hpmp) € lim Tp, where each
hp € S. Since S is compact there exists 2 €.S such that Anp = hpnp for all
P . This clearly means that & € (¢, g4 Px = g4+, contradicting g*ND = 2.
Hence there exists P, such that g4xnp N Dnp = @ for all P C Py. By 4.5(iv)
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we have g4np N Dnp = @, and a;np € glap N Cap = g"‘xnp Thus first
of all a; € ﬂPCP Aykermp = A, , and then q; € ﬂPCP g4 P, = g4 Thus
cly(g4) = g4, as required. O

Remark 1. For g as in 4.6, the condition (N, g4P, = g* is implied by
cly(g4) = g4. Forif b € g4P, then b € cly(g4) = g4, and so b €
g4nC = g4 by 4.5(iv).

Remark 2. The usual proof of the conjugacy separablhty of the profinite group
Ay in fact shows that for g € A, we have Npes 84 Px = gAx .
The next two results give partial information about conjugacy separability of
edge elements.

Lemma 4.7. Assume that (1) holds. Let h be an edge element of A, and as-
sume that there exists Py € I such that Yh,,,,o =Y,. Then clyhYNnD =
ClA(Yh)(hA(Yh)) NnD.

Proof. The condition implies that hAnp ¢ H,mp for all P C Py, where e
is an edge leading out of Y,. Let z € cly(hY) N D, so znp = h¥np for
some w € 4. We claim that w can be chosen in A(Y,). For if not, let
A be the smallest tree containing Anp and wnmp, and consider a reduction
process {Aj,...,A,} from A to ANY,. Now the first vertex x; ¢ VY,
and wnp ¢ A(Ay)mp by the minimal choice of A, and yet (hAzmp)®“” belongs
to a vertex group. By the conjugacy theorem for amalgamated free product, we
must have hnp € Hy x, 7p, contradicting the choice of P. We have therefore
shown that

hoe () kMW kernp C () A(Yy)kernp = A(Y)),

PQP() PCPy
and so
hoe () B kernp N A(Yy)
PCP,
() ") (kermp N A(Y})) = clyy,) (A4HW). DO
PCP,
Let # be an edge element of 4. For any sequence ¢ = (xi, ..., x,) of

vertices of 4 put D,(h) =DnN{h%"%: q; € Ay }. We have

Theorem 4.8. Assume that X is locally finite and D is compact. Let h be an
edge element of A*. Then h is conjugacy distinguished in A* if and only if
h*" N D = Dy(h) for some finite sequence & of vertices.

Proof. We know that cl:(h4") = |JhZ" with each h, € D. Let K = h*'nD =
Uy Do (h) , the union being over all finite sequences o . If z € cl+(h4")ND and
P €1 then there exists a sequence o (P) such that zmp € Dypy(h)np C K7p,
so z € Kkernmp. Thus

oLy (b1 )N D C (K (kermp) = clys (K).
P

Now D is a compact subset of 4A*, and so is closed. Therefore cly:(K) =
clp(K). Conversely if z € clp(K) and P € I then znp € Knp, so znp €
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Dy(h)np for some sequence o (dependingon P). In other words, z € cl . (h4"),
and we have shown that cl (h4") N D = clp(h4" N D). We also note that for
a fixed sequence o, the set D,(h) is a complete subspace of the compact set
D (since each vertex group AAx is compact), and is therefore compact. So if
W4 N D = Dy(h) then cly(A4)ND = clp(K) = K = h4" n D, which implies
that every h, € h4", and so h is conjugacy distinguished in A*. Conversely,
suppose cly:(h1") = k4. Then K = h4" N D = clp(K), so the compact
(since closed) set K is the (countable) union of the closed sets D,(4). Enu-
merate the finite sequences {0}, 02, ...}, and put T; = |J, j<iD(,j(h) . Then
K =U2, T;, and each T; is closed. By the Baire Category Theorem (or rather
its proof, using compactness), some 7;, has nonempty interior, and so con-
tains a set of the form AP, N D, where h € D and P € I. Since Px a5 Ay
and K is compact, it is easy to see that K is the union of finitely many T;,
whence K = T, for some j. Let o be the concatenation of the sequences
Oi,...,0;. Then it is clear that D4 (h) C D,(h) for 1 < i < j, and so
W4 ND =K =T; C Dy(h), as required. 0O
The following are immediate consequences of 4.7 and 4.8.

Corollary 4.9. Let X be locally finite, and let h be an edge element of A™ such
that Y, is finite. Then h is conjugacy distinguished in A* if and only if for
some finite sequence o of vertices of Y, we have h"" N D = D,(h). O

Corollary 4.10. Let A* be the amalgamated free product of countably many
groups. Then an element h of the associated subgroup H is conjugacy distin-
guished in A* if and only if h*" N H = D,(h) for some finite sequence ¢ of
vertices. O

5. CONJUGACY SEPARABILITY OF Gt

If X is not a tree then G* is a nontrivial HNN-extension over the base
group At = (A,: x € VX). By the length |g| of an element g € G* we mean
the number of ¢-symbols appearing in an HNN-reduced form for g. Thus
g =aty - tiay,1 , where all a; € A%, a4, is arbitrary, each ¢; = £1, each
e; € EX\EY (where Y is a fixed maximal subtree of X), and if e;_; = ¢;
and &1 +¢ = 0 then a; ¢ Hge, (we write H_, instead of H; for ease
of notation). The reduced element g is cyclically reduced if a,.; = 1 and
terayte! - - ay, is also reduced.

Theorem 5.1. Let g € Gt be cyclically reduced and of length at least one. Then
g is conjugacy distinguished in Gt .

Proof. Let z be a cyclically reduced element in clg+(g%"). It is easy to see
that the edge subgroups H,. are closed in 4", so we can find Py € I such
that |g| = |gzp|, |z| = |z7mp|, and both gzp and zmp are cyclically reduced
in Gp for all P C Py. The conjugacy theorem for HNN-extensions (e.g. [3])
now implies that |gzp| = |z7p|, so |g| = |z|. Modulo the same P we know
that gmp and some cyclic permutation of zm, have the same sequence of ¢-
symbols with the same exponents. Replacing z by a suitable cyclic permutation
we may assume that g = a8 --- a5 and z = byl - - butsr . For P C Py the
conjugacy theorem in Gp implies the existence of elements Ay p, ..., Hy p
such that, modulo P
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ho,pby =aihy p, hi,p€H,gpe,
e —
(h1,p0,)b2 =ashs p, ha,p € Heye, ,

—€n—1 J—
(hn—l,Pge,,_l)bn Eanhn,P s hn,P € He,,e,, s
—e, _ _
(hn,Pgen)EhO,P, SO hO,PeH—ene,, =Heoe0-

Since U_y He,, is compact, there exist elements /; € H,, such that hzmp =
hi pnp for all P. Then we have the equations hob; = ajhy, (hlgf,:)bz =
ahy, ..., h,,gf,: =hg,and so z = ho‘lgho . The result follows. 0O

To deal with conjugacy separability of elements of A* in G*, we begin with
the following trivial observation, which can be proved by using a length argu-
ment (as in the proof of 5.1) and the conjugacy theorem for HNN-extensions.

Lemma 5.2. If a € A* then clg+(a®) = JaS", where each a, € A*. In
particular, a is conjugacy distinguished in G* if and only if clg-(a® )N A+ =
a® n4t. o

The conjugacy theorem for elements of the base of an HNN-extension states
thatif a, b € A* are conjugate in G, then there exist elements 4, ..., A, €
Uecex\ey H,., such that a ~ h; in A* (ie., conjugate in A*), b ~ h, in
A*,and for 1 <i<m-—1,either h; ;| ~h; in A or h;y; = h;0, for some

e € EX\EY . Now we have

Proposition 5.3. Let a € A* be a nonvertex cyclically reduced element (relative
to some reduction process of Y;). Then clg+(a® )N A* = a4, and so a is
conjugacy distinguished in G*.

Proof. Choose P, such that for all P C P, we have Yin, = Y, and amp
is cyclically reduced (cf. the proof of 4.4). Then (anp)?™ N Dnp = @ by
4.5(iii) and using the fact that no nonvertex conjugate of an edge element can
be cyclically reduced. Now let b € clg+(a® )N A*. Then bznp is conjugate to
arnp in Gp. Since no A*mp-conjugate of aznp can belong to an edge subgroup
in Gp, we must have bzmp conjugate to anp in A*7p,andso b € clA+(aA+) =
a?" | the latter by 4.4. The final part follows from 5.2. 0O

For vertex elements of 4* we have the following (recall that C = J, oy 4 A, x):

Proposition 5.4. Assume that X is locally finite. Let a be a vertex element of
AT, and let b € clg+(a®" )N C. Then there exists a sequence c,, cy, ... of
elements of C such that (i) co = a; (ii) for each i > 1, either ¢; ~c;—y in C,
or ¢; =cij_1b,, for some e; € EX\EY ; and (iii) ¢; » b as i — oo.

Proof. For P €I let Sp(a, b) denote the set of all sequences g = {aj pmp:i>
0}, where each a; p € C, ag pnp = anp, a; pnp = bap for all sufficiently
large i, and each q; pmp is either Cmp-conjugate to, or the 6, p-image of,
a;—1,pnp (in other words, each o € Sp(a, b) represents a possible conjugacy
anp ~ brp in G}). For fixed i and P write T;(P) for the set of ith com-

ponents of all ¢ € Sp(a, b). Suppose a € ffx , and let A; denote the (finite)
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subtree of radius i with centre x. A simple inductive argument shows that
T;(P) C UerA,- Aynp , so each T;(P) is finite. If Q C P then every sequence
in Sp(a, b) maps to a sequence in Sp(a, b) under the induced map GE - G,
and so 7;(Q) maps into T;(P).

We construct the elements ¢; inductively, beginning with ¢y = a. Assume
that ¢, ..., ¢;—1 have been chosen subject to (ii) and cjn, € T;(P) forall P,
and 1 <j<i-1. Let Kp={c'np € T;(P): there exists g € Sp(a, b) such
that o,_; = ¢;_ynp and o0; = c’np}. Then each Kp # @, and if Q C P then
Ko maps into Kp under the induced map Gy — Gp. Let (dpmp) belong to
the inverse limit of the sets Kp. Then each dp € U ey, Ay, and the latter

set is compact, so there exists ¢; € UerA,- AAy such that ¢;mp = dpnp for all
P . Therefore, for every P there exists ¢ € Sp(a, b) such that o;_; = ¢;_17p
and og; = ¢imp. Also ¢;mp € T;(P) for all P. To verify (ii), note that for
each P the element ¢;mp is either conjugate to c¢;_;7p by some element of
UerA,-_l /‘Tyﬂp , or is the image of ¢;_;mp under some 6, p, where e € EA,.
The number of possibilities is therefore finite and independent of P, and so at
least one must hold for all P. If ¢;n, = ¢;—jnpb, p forall P, then ¢;_; € H,
and we get ¢;mp = (¢;—10.)mp for all P, whence ¢; =c¢;_10,. If ¢c;mtp ~ ci_17p
in UerA,- Aymp for all P, then ¢; ~ ¢;—; in UerA,» Ay , using compactness.
This proves (ii) for ¢;, and so the inductive construction goes through. Finally
given P it is clear that ¢;mp = bzp for all sufficiently large i, so ¢; — b as
1—o0. O

Corollary 5.5. Let a € A™ be a vertex element. Then a is conjugacy distinguished
in Gt ifand only if a® N C is a closed subset of A*.

Proof. By 5.2 and the proof of 5.3 we see that clg+(a®") = JaS" , where each
a, € C. By 5.4, for each a, there exists a sequence ¢; € C such that ¢; ~ a
in Gt and ¢, —» a, as i — oo. Thus each a, € cl(a® N C), and so
clg+(a® )N C C clys(a® N C). The reverse inclusion being trivial, we have
clg+(a® )N C = cly(a® N C). The result follows. O

Corollary 5.6. Let a be a vertex element of A*, and let D' = U,epx\py He -
If 4" N D' = @, then a is conjugacy distinguished in G* if and only if a is
conjugacy distinguished in A" .

Proof. Since no A*-conjugate of a belongs to an associated subgroup, we have
a% NA* = a*” by the conjugacy theorem for HNN-extensions, and so a® NC =
a4" N C. The result follows from 5.5 and the fact that cls.(a4") = Ja?" , with
all a, € C (this is a consequence of 4.4). 0O

To deal with elements of D' = J,cgx\ry H, we need the following:

Lemma 5.7. If D is compact, then so is C = J,cpx A,

Proof. 1t is sufficient to prove that C is complete, since we can always regard
C as a subspace of the profinite completion A+ . Solet {ap: P € I} be a subset
of C such that for all Q C P we have agnp = apnp. If every ap € D, then
the compactness of D implies the existence of 42 € D such that apnp = hnp
for all P, and we are done. Now suppose that apmnp, ¢ Dnp, for some Fy.

Then apnp ¢ Dnp forall P C Py, forif a, € A # A for some PC P,
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then ap,7p, = apmp, € Ay7p, N Ay np, € Dnp, , contrary to assumption. But now
the compactness of A4, gives the result. 0O

Consider the set of all finite sequences g = (X1, €}, ..., €;", Xp11), Where
xi€ VX, e EX\EY , and ¢ = £1. For such a sequence let

By(h)=CN{h8: g =aitl - 2ay, a; € Ay, for all i}.

Theorem 5.8. Assume that X is locally finite and D is compact. Then h €
D' is conjugacy distinguished in G* if and only if there exist finite sequences
O1...,0m suchthat h° nC =", B, (h).

Proof. By 5.5 the element £ is conjugacy distinguished in G* if and only if
K = k" N C is closed in A*. Since C is compact (by 5.7) and therefore
closed, this is equivalent to K being closed in C, i.e., to K being compact.
Now K = |J, B;(h), the union being over the countably many sequences o .
An application of Baire’s Category Theorem (cf. the proof of 4.8) shows that
K is compact if and only if it is the union of finitely many Bg,(%). (One needs
to show that each B, (%) is closed. For this, use the compactness of the ATx to
show that B,(h) is complete.) O

REFERENCES

1. R. B. J. T. Allenby and C. Y. Tang, Conjugacy separability of certain 1-relator groups with
torsion, J. Algebra 103 (1986), 619-637.
2. D. E. Cohen, Combinatorial group theory: A topological approach, Cambridge Univ. Press,
1989.
3. D. J. Collins, Recursively enumerable degrees and the conjugacy problem, Acta Math. 122
(1969), 115-160.
4. W. Dicks and M. J. Dunwoody, Groups acting on graphs, Cambridge Univ. Press, 1989.
5. J. L. Dyer, Separating conjugates in free-by-finite groups, J. London Math. Soc. (2) 20 (1979),
215-221.
6. —, Separating conjugates in amalgamated free products and HNN extensions, J. Austral.
Math. Soc. Ser. A 29 (1980), 35-51.
7. D. Gildenhuys and L. Ribes, Profinite groups and Boolean graphs, J. Pure Appl. Algebra 12
(1978), 21-47.
8. P.J. Higgins, The fundamental groupoid of a graph of groups, J. London Math. Soc. (2) 13
(1976), 145-149.
9. W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory, Wiley-Interscience,
1966.
10. V. N. Remeslennikov, Conjugacy in polycyclic groups, Algebra and Logic 8 (1969), 404-411.
11. —, Groups that are residually finite with respect to conjugacy, Siberian Math. J. 12 (1971),
783-792.
12. L. Ribes, Introduction to pro-finite groups and Galois cohomology, Queen’s Papers in Pure
and Appl. Math., vol. 24, Queen’s University, Kingston, Ontario, 1970.
13. J.-P. Serre, Cohomologie Galoisienne, Springer, Berlin, 1964.

14. ____, Trees, Springer, Berlin, 1980.

15. M. Shirvani, On residually finite HNN-extensions, Arch. Math. 44 (1985), 110-115.

16. ____, On residually finite graph products, J. Pure Appl. Algebra 49 (1987), 281-282.

17. —___, A converse to a residual finiteness theorem of G. Baumslag, Proc. Amer. Math. Soc.

104 (1988), 703-706.

18. P. F. Stebe, Conjugacy separability of certain free products with amalgamation, Trans. Amer.
Math. Soc. 156 (1971), 119-129.



CONJUGACY SEPARABILITY OF GRAPHS OF GROUPS 243

19. —_, Conjugacy separability of certain Fuchsian groups, Trans. Amer. Math. Soc. 163
(1972), 173-188.

20. P. A. Zalesskii and O. V. Mel’nikov, Subgroups of profinite groups acting on trees, Math.
USSR-Sb. 63 (1989), 405-424.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALBERTA, EDMONTON, ALBERTA, T6G 2G1
CANADA



