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CONJUGACY SEPARABILITY OF CERTAIN FREE
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BY
PETER F. STEBE

Abstract. Let G be a group. An element g of G is called conjugacy distinguished
or c.d. in G if and only if given any element 4 of G either 4 is conjugate to g or there
is a homomorphism ¢ from G onto a finite group such that £(h) and £(g) are not
conjugate in £(G). Following A. Mostowski, a group G is conjugacy separable or c.s.
if and only if every element of G is c.d. in G. In this paper we prove that every element
conjugate to a cyclically reduced element of length greater than 1 in the free product
of two free groups with a cyclic amalgamated subgroup is c.d. We also prove that a
group formed by adding a root of an element to a free group is c.s.

In [4], A. Mostowski defined conjugacy separable groups and showed that the
conjugacy problem is soluble for conjugacy separable groups. S. Lipschutz [1] has
solved the conjugacy problem for the free products of free groups with cyclic
amalgamated subgroups.

In this paper the problem of conjugacy separability of free products of free
groups with a cyclic amalgamated subgroup is considered. It is shown that every
element conjugate to a cyclically reduced element of length greater than 1 in the
free product of two free groups with a cyclic amalgamated subgroup is c.d. Also,
it is shown that a group formed from a free group F by adding a new generator x
and a single relation x"=g for some g € F is a conjugacy separable group.

A general reference for theorems in infinite group theory is the book by W.
Magnus, A. Karrass and D. Solitar [3]. References to this book are given as M.K..S.
followed by the page number or the number of the theorem or corollary cited.

The proof that a cyclically reduced element of length greater than one in the
free product of two free groups with a cyclic amalgamated subgroup is conjugacy
distinguished depends on certain properties of free groups. The set of lemmas to
follow explains these properties.

LeMMA 1. Let F be a free group. Let g be an element of F and let u be an integer.
If g+#1, there is a homomorphism x from G onto a finite group such that x(g) has
order u. If u is a power of a prime q, x may be chosen so that x(G) is a g-group.

Proof. According to a theorem of W. Magnus, the intersection of the groups
F* of the lower central series of F is the identity. Since g+#1, there is an index n
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such that g is an element of F™~! but g is not an element of F*. Let N be the sub-
group of F generated by g* and F™. N is normal in F since F" is normal in F and
the image of g in F/F™ is central. If g is an element of N, g*=g"*f, where fis an
element of F™. Since F/F™ is torsion free, g¥ is an element of N only if u divides v.
Thus g has order ¥ modulo N. Since N> F", F/N is nilpotent. Let » be the natural
homomorphism from F onto F/N. Then 7(g) has order u and 5(F) is nilpotent.

By a theorem of K. Hirsch, n(F) is residually finite. Let M be a normal subgroup
of finite index in 7(F) not containing g, g2, ..., g*~*. Let ¢ be the natural homo-
morphism from 5(F) onto n(F)/M. Then ¢n(F) is finite and ¢n(g) has order u.

Now suppose u=g® for q a prime. The group &x(F) is nilpotent since it is an
image group of the group F/N. Since &(F) is finite, it is the direct product of its
Sylow p-subgroups. Since é7(g) has order g°, there is a direct factor Q of &y(F)
such that éx(g) € Q and Q is a finite ¢ group. There is a homomorphism 8 from
&(F) onto Q, such that & restricted to Q is the identity. Thus 8§&7(F) is a finite
g-group and 8¢7(g) has order g°.

The proof of Lemma 1 was suggested by D. S. Passman.

LEMMA 2. Let a,, .. ., a, and b be nonidentity elements of a free group F. Let p be
a given prime number. If a, # b* for each i and all integers z, there is a normal subgroup
N of finite index in F such that a;#b* mod N for each i and all integers z and the
order of b modulo N is a power of p.

Proof. Suppose there is an a; such that (a;, b)# 1. For each i such that (a;, b) #1
let M; be a normal subgroup of index a power of p in F such that (a;, b) ¢ M,. Let
M be the intersection of all the M;. The group F/M is a p-group. If all a; commute
with b, let M be a normal subgroup of index a power of p in F such that b ¢ M.
Let the order of b modulo M be p°.

The element b and all the g; that commute with b generate a cyclic subgroup C
of F. Let f generate C. Thus b=f*, a;=f" for each a; commuting with b, and s
divides no r;. Let R be a normal subgroup of finite index in F such that f has order
sp® modulo R.

Let N=M N R. The element b has order p® modulo each of M and R so b has
order p® modulo N. If a; commutes with b, ¢;=5* mod N implies ¢,;=b* mod R
and this congruence implies that s divides r,, contrary to hypothesis. If (a;, b)#1
then (a;, )1 mod N so a;#b* mod N. Thus, ;% b* mod N for all i and each z.

LEMMA 3. Let F be a finitely generated free group. Let a, b and c be elements of
F. If the equation a=b"c™ has no solution for integral n and m, there is a normal
subgroup N of finite index in F such that the congruence a=b"c™ mod N has no
integral solutions.

Proof. The proof is divided into several cases.
Case 1. The elements b and ¢ commute. In this case b and c¢ generate a free
cyclic subgroup of F. Let f generate the cyclic subgroup generated by a and b. The
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equation a=>b"c™ is equivalent to the equation a=f". By Lemma 2, there is a normal
subgroup N of finite index in F such that a#f™ mod N for all integers n. Thus
a#b"c™ mod N for all integers n, m.

Case 2. Assume that the elements » and ¢ do not commute. In this case the
subgroup generated by b and c is free of rank 2, and hence is freely generated by b
and c. Let H be the subgroup generated by 4 and ¢. According to a theorem of
A. Karrass and D. Solitar [2], H is a free factor of a subgroup M of finite index in
F. Since M is of finite index in a finitely generated free group, M is finitely generated.
Since b and c freely generate a free factor of M, we may take x; =5, xo=c¢, X, . . ., Xy,
to be the free generators of M.

Suppose a is an element of M. Let w be the reduced word in the generators x;
of M representing a. Let v be an integer greater than any exponent in the expression
w=xgl...xgk with n;#n;,,. Let ¢ be the homomorphism from M onto
G=(ay, ..., a,; a?=1) defined by assigning &(x;)=a;. Now &(a)+# £(b)*£(c)t for all
integers s and ¢, since the image of @ in G is represented by ag!- - -agk=w, and wis a
reduced word in G. G is the free product of the cyclic groups of order v generated
by the ;. Now G is residually finite since it is the free product of a set of finite
groups. G contains only finitely many elements £(b)*¢(c)’. There is a homomorphism
7 from &(M) onto a finite group so that né(a)#né(b)né(c)'. Let U be the kernel
of né.

If a is not an element of M, let U= M. In either case, U is of finite index in M
and hence F. Let N be the intersection of all the conjugates of U. N is a normal
subgroup of finite index in F. Since a~!b"c™ is not an element of U for all n, m and
U>N, a#b"c™ mod N for all n and all m.

LEMMA 4. Let F be a free group. Let g, h be elements of F. If (g, h)#1, then
(h~'gh, g)#1.

Proof. Let S be the subgroup of F generated by g and A. S is free of rank 1 or 2.
If S has rank 1, it is abelian and (g, #)=1, contrary to hypothesis. If S is free of
rank 2, it is freely generated by g and A, so that (h~gh, g)#1. Q.E.D.

LeEMMA 5. Let F, and F, be free groups. For each i, let N; be a normal subgroup
of finite index in F;. For each i, let g, be a nonidentity element of F;. If g; has order n;
modulo N, there is a normal subgroup M; of finite index in F; such that N; contains
M, and g, has order niny modulo M.

Proof. Let U, be a normal subgroup of finite index in F; such that g; has order
nyng modulo U,. Let M;=N; N U,. Since gj1™ is an element of N, g; has order n;n,
modulo M.

LEMMA 6. Let G be a group. Let g and h be elements of G. Let p be a prime. Let
g have order p® in G. If (g, h~*gh)#1 and h~'g"h=g", then p divides r and s.

Proof. If r were relatively prime to the order of g, we would have h~!gh
=(h~1g"h)*=g" for some integer v, so that 2~ 'gh would commute with g. Thus p
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divides r. If s were relatively prime to the order of g, we would have g=g%
=(h~g"h)’=(h~'gh)™ for some integer v, so that h~1gh would commute with g.
Thus p divides s.

LeMMA 7. Let G be a group. Let N; be a normal subgroup of G for i=1,..., k.
Let b be an element of G. Let p be a prime number. If the order of b modulo N is a
power of p for each i, b has order a power of p modulo the intersection of the N;.

Proof. Since k is finite, we need only the case of two N;. Let b have order p*
modulo N, and order p°2 modulo N,. Assume without loss of generality that e; is
greater than or equal to e;. Now b*** is an element of both N; and N, and hence of
N; N N,. Thus the order of b modulo N; N N, divides p® and so is a power of p.

The next lemma is about the free product of any two groups with a cyclic amal-
gamated subgroup.

LEMMA 8. Let G be the free product of two groups A and B with a cyclic amal-
gamated subgroup C generated by an element c. Let g and h be elements of G. Let
g=t,---tyand h=s,- - -s,, where each t, is in A or B, each s, is in A or B, consecutive
t, are in different factors of G and consecutive s; are in different factors of G. The
equation c~*hc*=g is valid for an integer z if and only if there exist integers
Ug, . . .y Uy SUch that t71cti-15,=c" for i=1, ..., m and uy=u,,.

Proof. If the equations have a solution, clearly g=c"ohc~%. Suppose
g=c%hc~%. Then t,- - -t,=c" s, - - - s,¢~*. The left-hand side of the equation has
syllable length n while the right-hand side of the equation has syllable length m
since c is in the amalgamated subgroup. Thus n=m. Also

Ly -+ t, = t{1c%0S8,8y- - - Sy Yo,

The left-hand side of the equation has syllable length n—1 so that ¢; 1c¥s; must be
in the same factor of G as s,. This is possible only if #; c¥os, is in the amalgamated
subgroup. Thus #] *c¥os, = c*: for u, an integer. The process can clearly be continued,
so that an induction based on this process will prove the lemma.

In the statements and proofs of Lemmas 9 through 16 we make the following
conventions. Let F; and F;, be finitely generated free groups. Let ¢; be an element of
F, i=1, 2. Let G be the free product of the F; with the cyclic subgroups generated
by the ¢; amalgamated. Let ¢ be the generator of the amalgamated subgroup of G.

LEMMA 9. Let N, and N, be normal subgroups of F, and F, respectively. If the order
of ¢, modulo N, equals the order of c, modulo N, there is a homomorphism ¢ from
G onto the free product of F,/N, and F,|N, with the images of ¢, and ¢, amalgamated.
The homomorphism ¢ acts as the natural homomorphism from F; onto F,/N;.

Proof. Lemma 9 is trivial.

LEMMA 10. Let F;> N;> M, where N; and M; are normal in F; for i=1, 2. Let the
order of ¢, mod N, equal the order of c, mod N, and let the order of ¢; mod M,
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equal the order of c; mod M,. If « is the homomorphism constructed as in Lemma 9
with the N, and B is the homomorphism constructed as in Lemma 9 with the M, then
the kernel of « contains the kernel of B.

Proof. Clearly «(G) is a factor group of B(G). Thus the kernel of « contains the
kernel of B.

LemMa 11. Let g and h be elements of G. Let g=ty- - -t,, h=s;- - -5, be expres-
sions for g and h in terms of syllables t,, s;, where consecutive t, and consecutive s; are
in different factors of G. Let n> 1. If m#n or one of the equations t; *c*s,=c® has no
integral solution u, v, there is a homomorphism & corresponding to normal subgroups
of the F; as in Lemma 9 such that each £(F,) is finite and £(c) ~2£(g)é(c)* # &(h) for all
integers z.

Proof. First we consider the case n=m. Suppose #; cts;=c® has no solutions
and that ¢, and s; are elements of the same factor of G. Without loss of generality,
let the factor of G be F,. Let N, be a normal subgroup of finite index in F; such that

(1) ¢ ic“s;c~? ¢ N, for all integers u, v.

2) If t;€ Fy, tj'c* ¢ N; for all integers z.

(3) If s; € Fy, s;¢* ¢ N, for all integers z.

The subgroup N, is the intersection of subgroups provided by Lemmas 2 and 3.
Let N, be a normal subgroup of finite index in F, such that

(1) If t; € F,, t;c* ¢ N, for all integers z.

(2) If 5; € F,, s,¢* ¢ N, for all integers z.

The subgroup N, is the intersection of normal subgroups provided by Lemma 2.

If ;7 1c*s;=c® has no solution for ¢ and s; in different factors of G, we omit the
property (1) from the properties of N;.

Let N, > M,, N,o M,, where M, and M, are normal subgroups of finite index
in F; and F, respectively such that the order of ¢; mod M, equals the order of
¢, mod M,. Let ¢ be the homomorphism of G corresponding to M; and M,
according to the construction of Lemma 9.

Suppose there is an integer z such that £(c) ~?£(g)€&(c)? = €(h). Then by Lemma 8
there are integers uo, . . ., 4, such that

£(t) () h-1€(s) = &), uo = up,
for &(¢,) and £(s;) are the syllables of £(g) and &(h). Thus
it teu-1sc7%) = 1.

But this is impossible, so the result follows in the case n=m.
If n#m, choose N, to be a normal subgroup of finite index in F; such that
(1) If m=1 and s, € F, then s; ¢ N,.
2) If m+#1 and s; € F, then s;c~% ¢ N, for all z.
(3) If t; € F,, then t,c~* ¢ N, for all z.
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Let the subgroups M; and the homomorphism ¢ be constructed as above. The
syllable length of £(g) is n. The syllable length of &(k) is m. Since m#n, Lemma 8
implies that £(c) ~2£(h)é(c)? +# £(g).

LEMMA 12. Let g=t,-- -t,, h=s,-- -5, where n>1 and the s; and t; are syllables
of g and h as in Lemma 11. Let (t;, ¢)#1 for all i and let each equation t; ‘c*i-1s,=c"
have an integral solution. If c=*hc*s g for all integers z there is a homomorphism &
as described in Lemma 9 such that each &(F) is finite and &(c~2hc?)+ &(g) for all z.

Proof. According to Lemma 4, (#; 'ct;, ¢)#1 for all i. Let p be a prime number
dividing no nonzero difference u; —v,, uy—vy, ..., u,—v,_;. Let N, be a normal
subgroup of index a power of p in F; such that

(1) If t; € F,, then (¢7 'ct;, ¢) ¢ N,.

(2) If 5; € F;, then (s7 %csy, ¢) ¢ N,

The subgroup N; is the intersection of subgroups of index a power of p in F,.
Lemma 1 is used repeatedly. Since the equation #; l¢*s,=c" is valid for integers
u;, v;, we have (s, ¢)#1.

Let M; be a normal subgroup of finite index in F; such that M, is contained in
N,, the order of ¢; modulo M; is a power of p, and the order of ¢; modulo M,
equals the order of ¢, modulo M,. Let ¢ be the homomorphism defined as in Lemma
8 from G onto the free product of F,/M; and F,/M, with the image of C amal-
gamated.

Suppose £(#)~16(c) é(s:) = €(c) . Since &(1;)~*¢(c)“&(s;) = £(c)™, we have £(c)*
=§(t) 7 €(c)* (). Now &((#7 *ct;, ¢))#1 so that w—uv, and v—u; are divisible
by p according to Lemma 6. If ¢(c) ~2¢(h)é(c)* = £(g), there exist integers w, . . ., w,
such that £(r,) ~*¢(c)*s-1£(s;) = €(c)*s with wo=w,. Thus 0=w,—w,=u; —v, mod p,
O=w,_y~Wp_1=u,—v,_; mod p etc. Since by choice of p at least one of the
differences on the right is incongruent to zero mod p, we have &(c)~2¢(h)é(c)?
#£(g). QE.D.

LEMMA 13. Let g=t,- - -ty, h=s,- - -5, where h and g are elements of G and the
t; and the s; are syllables of g and h respectively. Let m be greater than 1. Let at least
one (1, ¢)#1. If each of the equations t;*c*s,=c% has an integral solution but
c*hc*#g for all integers z, there is a homomorphism ¢ as given by Lemma 9 such
that each &(F) is finite and £(c=2he?) + €(g) for all integers z.

Proof. For each i such that (#,c)=1 we have #;is;=c" . We may set
h=s,-- -5, where s;=t; if t, commutes with ¢, no two adjacent s, are in the same
factor of G, and no s is in the amalgamated subgroup. The equations #; *cts; = c?
have solutions u;, v; with w;=v; if t, commutes with ¢. Let tnys - - .5 Iy bE the £ not
commuting with ¢ and let n,>n,_,; > - - - >n,. If each of the differences

Uny —Unys  Uny—Unyy ooy Up,—Vp |
are zero, there is an integer z such that ¢~2hc*=g. Let p be a prime relatively prime
to at least one of the nonzero differences. By Lemma 4, (¢, ¢)#1 implies (t tety, ©)
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# 1 since ¢; is in a factor of G. By Lemmas 1 and 2 a normal subgroup N, of F; can
be found with the properties:

(1) N, is of finite index in F;.

(2) ¢, has order a power of p modulo N,.

(3) If t;€ F,, t;%# ¢ mod N, for all z.

4) If s; € F, s;# ¢ mod N, for all z.

(5) If tj € Fi’ (ti’ ci)7'é 1’ (tj_ lcit]’ ci) ¢ Ni‘

6) If s;€ F, (54, c)#1, (857185, ¢) € N,

The subgroups N; are found by intersecting the normal subgroups of index a
power of p given by Lemma 1 for properties (5) and (6) with normal subgroups of
finite index given by Lemma 2 for properties (3) and (4) and the prime p. By Lemma
7, ¢; has order a power of p modulo N;. Let M; be a normal subgroup of finite
index in F; such that N; contains M, and the order of ¢; modulo M; equals the order
of ¢, modulo M,. By Lemma 5, the M, can be chosen so that the order of ¢; modulo
M; is a power of p. Let ¢ be the homomorphism from G onto the free product of
the groups Fj/M; with the images of the ¢; amalgamated, as given by Lemma 9.
Let g denote the image £(g) of g€ G.

Suppose (#;, ¢)# 1. By the properties of the M; we have (¢ 1ct, ¢)# 1. If ¢ 1c%t,
=c%, then ¢~ vi=¢ ¢~ %¢,. By Lemma 6, a;—u; and b,—v; are divisible by p.
If (¢, c)=1, then t,=s; so that q;=b,.

Now ¢; and s; are the syllables of g and A respectively, so that ¢~2hc*=g if and
only if the equations #;‘c%s;=c% have integral solutions a;, b; with ¢% =c"n,
c2=c", ..., c%=c"-1, Suppose there are such solutions to these equations. The
elements of the list a;—b,, a—b,,...,a,—b,_, are each congruent to zero
modulo the order of ¢ and hence congruent to zero modulo p. It follows from the
last paragraph that a,=a,,, b,=b,.and a, —b, is congruent modulo p to u,, —v,,.
In general each of the differences u, —v, _, is congruent to an element of
ay—by,...,a,—b,_, and at least one of the differences u,,—v,, _,, tn, —0,, is not
congruent to zero modulo p. Thus ¢~2hc*+#g for all z.

LemMA 14. Let g=t,- - -t,, h=s,- - -S,, where g and h are elements of G and the
t; and s; are syllables of g and h respectively. Let m be greater than one. Let every t;
commute with c. If each of the equations t; *c*s;=c" has an integral solution u,, v;
but c=2gc*#h for all integers z, there is a homomorphism ¢ as given by Lemma 9
such that each &(F)) is finite and &(c~2gc?)# E(h) for all integers z.

Proof. Let f=gh~*. Since ¢c~?gc*s#h for all z, f#1.

Suppose f'is in a factor of G. Without loss of generality assume f'is an element of
F,. Let N, be a normal subgroup of finite index in F; not containing f. Let N, be
a normal subgroup of finite index in F, such that the order of ¢, modulo N, equals
the order of ¢; modulo N;. Let ¢ be the homomorphism constructed according to
Lemma 9 using the ;. Clearly &(f)#1.
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If f is notin a factor of G, let f=u; - - -u, where each u; is in a factor of G, adjacent
u; are in different factors of G, and no u; is in the amalgamated subgroup of G. Let
N; be a normal subgroup of finite index in F; such that if u; ¢ F;, then u,c;? ¢ N;
for all integers z. Let M; be a normal subgroup of finite index in F; such that N;> M;
and the orders of ¢; modulo M; are equal. Let ¢ be the homomorphism constructed
according to Lemma 9 using the M;. Clearly &(f)#1.

Since each #; commutes with ¢, g commutes with ¢ and hence £&(g) commutes
with £(c). Thus £(c) ~2£(g)é(c)*=&(h) if and only if £(g) = £&(h) or £&(f)=1. Thus the
lemma is proven.

LeMMA 15. Let g be a cyclically reduced element of length greater than one in G.
Let g=t,---t, where m>1, t; is an element of a factor of G, consecutive t; are in
different factors of G, no t; is in the amalgamated subgroup and t, and t, are in
different factors of G. Let h be a cyclically reduced element of G. Let h=s,---s,
where n2 1, consecutive s; are from different factors of G, and if n>1, no s, is in the
amalgamated subgroup and s, and s, are from different factors of G. If for each
cyclic permutation ¢ of 1,...,m and all integers z we have ¢ *tyay: * * tomC*#h,
there is a homomorphism ¢ from G onto the free product of two finite groups with a
cyclic amalgamated subgroup such that &(t;) are the syllables of £(g), &(s;) are the
syllables of £(h), £(g) is cyclically reduced, £(h) is cyclically reduced, &(c) generates
the amalgamated subgroup of £(G) and £(c™?toqy: - - tomyC?) # E(h) for all integers z
and each cyclic permutation ¢ of 1,. .., m.

Proof. By Lemmas 11 through 14 there is for each ¢ a homomorphism ¢, from
G onto the free product of £,(F;) and £,(F,) with the images of the ¢; amalgamated
such that ép(c™%tp)" - - tomC?) # €o(h) for all integers z. Let K, be the kernel of &,.
Let K, ;=K, N F;. Let K;=(" K,; so that each K; is a normal subgroup of finite
index in F;. Let M, be a normal subgroup of finite index in F; such that M;< K,
t,e~* ¢ M, s,c™* ¢ M, for all j and all integers z and the orders of ¢; modulo M;
are equal. Let ¢ be the homomorphism obtained by Lemma 9 using the M,. Let K
be the kernel of ¢. By Lemma 10, K< K, for each ¢, so that ¢ is the required
homomorphism.

LEMMA 16. Let G be the free product of two finite groups with an amalgamated
subgroup. If g is a cyclically reduced element of length greater than one in G, g is c.d.
in G.

Proof. According to B. H. Neumann [5, p. 532], there is a homomorphism ¢
from G onto a finite group such that the kernel of ¢ meets each factor of G only in
the identity. According to a theorem of H. Neumann, M.K.S., Corollary 4.9.2, the
kernel of ¢ is free. Thus G is a finite extension of a free group. Since g is cyclically
reduced and has syllable length greater than one, g is of infinite order in G. It
follows from a theorem of the author [7] that g is c.d. in G.
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THEOREM 1. If G is the free product of two free groups with a cyclic amalgamated
subgroup, every element of G conjugate to a cyclically reduced element of length
greater than one is c.d. in G.

Proof. Clearly we need only consider g cyclically reduced in G. Let & be a cyclic-
ally reduced element of G. Let g=¢,- - -t,, h=s,- - -5, where m>1, n=1, consecu-
tive ¢; are elements of different factors of G, consecutive s; are in different factors
of G, no ¢ is in the amalgamated subgroup of G, ¢, and ¢, are from different
factors of G, s, and s, are from different factors of G if n>1, and no s, is in the
amalgamated subgroup if n>1. According to a theorem of D. Solitar, M.K.S.,
Theorem 4.6, g is conjugate to & if and only if there is a cyclic permutation ¢
of 1,..., m and an integer z such that ¢~?¢,q,- - - o, =h. Since this equation is
untrue for all ¢ and z, there is, by Lemma 15, a homomorphism ¢ from G onto the
free product of two finite groups such that £(g) is cyclically reduced, &(¢,) are the
syllables of £(g), £(g) has syllable length greater than 1, £(s;) are the syllables of
£(h) and for each cyclic permutation ¢ of 1,..., m, &(c™*t4qy:  * toemC?) # E(h) for
all z. Since the quoted theorem of D. Solitar applies to £(G), £(g) and &(h) are not
conjugate in &(G). By Lemma 16, &(g) is c.d. in &(G) so there is a homomorphism
x from &(G) onto a finite group such that y&(g)+ x&(h).

If & is not cyclically reduced, let »'=h* where A’ is cyclically reduced. Since
h~g, k' ~g so that by the last paragraph there is a homomorphism y¢ from G
onto a finite group so that x&(g)~xé&(h’). But then xé&(g)~ xé(h). Thus g
is c.d. in G.

In the next lemma we consider the group G formed by adding a single relation
x"=g to the free product of a free group F and the free cyclic group generated by a
generator x. We always let g be an element of F and call G the group formed by
adding a root of an element to a free group. The notation for G as constructed
above is G=(F, x; x"=g).

Note that if F is a free group G=(F, x; x"=g) is a free product of two free
groups with a cyclic amalgamated subgroup. By Theorem 1, every element of G
conjugate to a cyclically reduced element of length greater than one is c.d. in G.
Thus to prove that G is c.s. we need only consider elements of length one in G.

LeMMA 17. Let F be a free group and let G=(F, x; x"=g) with ge F. If g, and
g, are nonconjugate elements of F or distinct powers of x, there is a homomorphism
£ from G onto a finite group such that £(g,) is not conjugate to £(g,) in &(G).

Proof. The proof is divided into two cases.

Case 1. Let g; and g, be two nonconjugate elements of F. Since F is c.s., there
is a normal subgroup N of finite index in F such that g, #h~'g,h mod N for he F.
Let g have order m modulo N and ¢ be the natural homomorphism from F onto
F/N. Let ¢ be the homomorphism from G onto H=(F/N, y; y"=§&(g)) defined as
follows: ¢(u)=E&u) for ue F, $(x")=y", Pp(ab)=4(a)-$(b). Now ¢ is a homo-
morphism since Y(x")=y"=¢£(g) and Y(g)=£(g). Let M be the set of matrices
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with entries in the integral group ring R of F/N. We set ¢p(u)=diag (u, . . ., u) for
ue F|/N and o(y)=diag (1, ..., 1, £&(g))- P where P is the n x n permutation matrix
corresponding to the cycle (1,2,...,n). Now ¢u) - t=diag(@~1,...,u"1) for
ue FIN, o(y")=9(£(8)), $(y)~t=P""1diag(l,..., 1, &g)~1), so that the mat-
rices (H) generate a group U in M, and ¢ is a homomorphism from H onto the
group U. If D is a diagonal matrix, DP=PD* where D* is a diagonal matrix whose
entries are, up to order along the diagonal, the same as those of D. Thus if T'is an
element of U, T=P" diag (d,, . . ., d,) where the d; are elements of F/N. Thus U is
finite.
Suppose @i(g;) is conjugate to g(g,) in U. Then

dlag (g(gl)’ sy g(gl)) .
= diag (di’%, ..., d; )P ~* diag (£(g2); - - .. £(g2))P* diag (d,, ..., d,).

Now Pt commutes with diag (¢(g2), . . ., £(gs)) so that one has £(g,)=d; *&(g.)d,
for each dj, d;e S/N. But if h e §~*(d;) we have g;=h"g,h mod N, contrary to
hypothesis. Thus ¢i(g;) is not conjugate to ¢i(g,) in the finite group U.

Case 2. Let g, =x' and g,=x’, and let g, not be conjugate to g,. One has i#j.
If gt =g' is not conjugate to gi=g’ in F, according to Case 1, there is a homomor-
phism y from G onto a finite group such that y(g?) is not conjugate to y(g%) in
¥(G). Now y(g1)=h""y(gz)h implies y(g:1)"=h""y(g2)"h 50 y(g:) and y(g,) are not
conjugate. Let there be an 4 in F such that h=g'h=g’ for i#j. The subgroup S
generated by g and 4 must be free of rank <2. If S has rank 2, g and / are free
generators of S and i=;j=0, contrary to hypothesis. If S has rank 1, S is abelian
and g'=g’. Since F is torsion free and i#j, g is the identity. But if g is the identity,
G is a free product of F and the cyclic group of order n generated by x. Thus G is
c.s. by Theorem 2 of [7] and the result follows.

ReMARK. The matrix construction used here is based on a construction in the
book by A. Speiser [6]. D. S. Passman has remarked that a representation of G as a
wreath product would be sufficient.

THEOREM 2. Let F be a free group. Let g be an element of F. If G=(F, x; x"=g),
then G is c.s.

Proof. Let f'be an element of G and let A be an element of G not conjugate to f.
If either f or 4 is conjugate to a cyclically reduced element of length greater than
one then it is c.d. in G by Theorem 1 so that there is a homomorphism ¢ from G
onto a finite group with the property £(f)~ &(h). Thus we may assume that f and
h are conjugate to elements of length one in G, and we need only consider fand A
cyclically reduced.

If f and A are in the same factor of G, Lemma 17 implies that there is a homo-
morphism ¢ from G onto a finite group such that &(f)~ &(h).

If fand h are in different factors of G, neither is in the amalgamated subgroup.
Thus one of fand 4 is a power of x but not a power of g. Let ¢ be the homo-
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morphism from G onto the group (y;y"=1) determined by the assignments
x —y, F—1. Clearly ¢ is a homomorphism from G onto a finite group and
§(f)~ &h).

Thus every element of G is c.d. in G so G is c.s.
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