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CONJUGACY SEPARABILITY OF GROUPS
OF INTEGER MATRICES

PETER F. STEBE

ABSTRACT. An element g of a group G is conjugacy distinguished
if and only if given any element 4 of G either g is conjugate to & or
there is a homomorphism & of G onto a finite group such that &(g)
is not conjugate to &(h). Following A. W. Mostowski, a group is
conjugacy separable if every one of its elements is conjugacy dis-
tinguished. Let GL(r, Z) be the group of »n X n integer matrices with
determinant +1. Let SL(n, Z) be the subgroup of GL(r, Z) con-
sisting of matrices with determinant +1. It is shown that GL(n, Z)
and SL(n, Z) are conjugacy separable if and only if n=1 or 2. The
groups SL(n, Z) are also called unimodular groups. Let GL(n, Z,)
be the group of invertible p-adic integer matrices and SL(n, Z,) be
the group of p-adic integer matrices with determinant 1. It is shown
that GL(n, Z,) and SL(n, Z,) are conjugacy separable for all » and
all p.

1. Introduction. A. W. Mostowski [4] defined conjugacy separable
groups (see the abstract to this paper) and showed that the conjugacy
problem is solvable in finitely presented conjugacy separable groups. It
has been shown [6] that the free products of conjugacy separable groups
are conjugacy separable and the elements of infinite order in a finite ex-
tension of a free group are conjugacy distinguished:

According to H. S. M. Coxeter and W. O. J. Moser [2, p. 85], the group
GL(2,Z) has the presentation (x,y,z; x2=)2=22=1, (xy)’=(x2)%,
(xz)*=1). Clearly GL(2, Z) is the free product of the groups G;=(x, y;
x:=y%=1, (xy)¥=1) and G,=(v, z; v®=z%=1, (vz)*=1) with amalga-
mating relations x=v and (vz)?=(xy)3. Thus an abelian subgroup of order
4 is amalgamated. The group SL(2, Z) is a subgroup of index 2 in GL(2, Z)
and has the presentation (x, y; x2=)3, x=1). These presentations will be
used to show that GL(2, Z) and SL(2, Z) are conjugacy separable.

2. Conjugacy separability of GL(2, Z) and SL(2, Z).
THEOREM 1. The group GL(2, Z) is conjugacy separable.
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ProoF. By the remarks in the Introduction, there is a free group F such
that [SL(2, Z); F]<ooand [GL(2, Z):SL(2, Z)]< co. Thus [GL(2, Z): F]<
co. According to [6, Theorem 2], every element of infinite order in GL(2, Z)
is conjugacy distinguished in GL(2, Z). It follows from [3, Corollary
4.9.1] that the elements of finite order in GL(2, Z) are conjugate to elements
of the factors G, and G, described in the Introduction. Thus, to show that
GL(2, Z) is conjugacy separable we need only show that the conjugates of
elements of G, and G, are conjugacy distinguished. Let g be an element
of GL(2, Z) conjugate to an element of G, or G,. Let & be any element
of GL(2, Z) not conjugate to g. If A has infinite order in GL(2, Z), & is
conjugacy distinguished in GL(2, Z) so there is a homomorphism & of
GL(2, Z) onto a finite group such that £(g) is not conjugate to &(k) in
&(GL(2, Z)). Thus we need only consider / of finite order in GL(2, Z)
and hence 4 conjugate to an element of G, or G,. Clearly, to show that
there is a homomorphism & of GL(2, Z) onto a finite group such that
&(g) is not conjugate to &£(#) in GL(2, Z) we can replace g and 4 by their
conjugates in G, or G,, and by representatives of their conjugacy classes
in these subgroups. The elements 1, x, y, xy, (xy)? and (xy)? are a com-
plete set of conjugacy class representatives for the subgroup G;. Note that
the defining relation (xy)®=(xz)? implies that yxyxy=zxz. Since x, y and
z are of order 2, x is conjugate to y in GL(2, Z). Also, the elements 1, v, z,
vz and (vz)? are a complete set of conjugacy class representatives for the
subgroup G,. Using the identifications x=v and (vz)*=(xy)® we conclude
that every element of finite order in GL(2, Z) is conjugate to one of the
elements of the set {1, x, z, xz, (x2)?, xy, (xy)?}. The orders of those
elements are, respectively {1, 2, 2, 4, 2, 6, 3}.

If # is a finite representation of GL(2, Z) faithful on the factors G, and
G, of GL(2, Z), the images of two elements of different order will not be
conjugate in 7(GL(2, Z)). According to B. H. Neumann [S, p. 532], such
a representation exists. Thus we need only consider g and / conjugate to
different elements of the set (x, z, (xz)%). Let & be the representation of
GL(2, Z) induced by imposing the relation y=x. The image of GL(2, Z)
is generated by u=1n(x), w=1(z) with relations u>*=w?=(uw)?=1. Clearly
n(x)#n(2), n(x)wn((x2)*))=1 and n(z)wn((xz)*)=1.

THEOREM 2. The group SL(2, Z) is conjugacy separable.

ProofF. Since SL(2, Z) has the presentation (x, y; x2=y3%, x*=1), it is
the free product of a cyclic group of order 4 and a cyclic group of order 6
with amalgamation. Every element of finite order in SL(2, Z) is conjugate
to an element of a factor of SL(2, Z), so that an element of finite order in
SL(2, Z) is conjugate to a power of x or y. Let # be the homomorphism of
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SL(2, Z) onto the cyclic group of order 12 (u; u'*=1) given by n(x)=u3,
n(y)=u?. The conjugacy class representatives of the elements of finite order
in SL(2, Z) are the elements (1, x, x2, x3, y, %, ¥4, y%). Their % images are,
respectively, (1,43, u8, u®, u?, u*, us, u'). Thus if g and h are any two
elements of finite order in SL(2, Z), either g is conjugate to 4 or 7(g) is not
conjugate to n(h). Let g and & be any two nonconjugate elements of
SL(2, Z). Since SL(2, Z) has a free subgroup of finite index, every element
of infinite order in SL(2, Z) is conjugacy distinguished. Hence to prove
conjugacy separability, we may assume that g and h are of finite order.
Then #(g) is not conjugate to n(h), so g is conjugacy distinguished. Hence
SL(2, Z) is conjugacy separable.

3. The groups GL(n, Z) and SL(n, Z). Let A and B be the matrices

_[anp+1 25010
A_{ 112 16(11)+J’

T +1 11
B_{ 25(11)2 16(11)+1:|'

ExaMPLE 1. The matrices 4 and B have the following properties:
(i) determinant 4A=determinant B=1;

(ii) neither 4 nor B has eigenvalue 1;

(iii) if # is an integer there is an integer matrix 7, such that 7,4=
BT, mod (n) and determinant 7,,=1;

(iv) thereisno 2 x 2 integer matrix 7 such that T4 =BT and determinant
T==1.

Argument. Properties (i) and (ii) follow from a simple computation.

To obtain (iii) we need a lemma.

LemMma 1. Let T be a 2X2 integer matrix. Let n be an integer. If
determinant T=1 mod n there is an integer matrix U such that determinant
=1 and U=T mod n.

Proor. Let T=(t;,), i=1, 2, j=1, 2. Let d be the greatest common
divisor of t,; and t,,. Let t;,=15d, t;,=1]5d, so that 1{; and #; are relatively
prime integers. Thus there are integers a and b such that atj,—btf;=1. Let
determinant 7=1+rn. Let U be the matrix

I:tu + n(a + ctyy) by + 0 + Ctlz)il
tyy + ndty tyy + ndty

with ¢=bty —aty,—r, d=—cr. Clearly U=T mod »n and it follows from
evaluation that determinant U=1.

The matrix U was suggested by Edward A. Bender.

Lemma 1 implies that (iii) is shown if we can show that for each n there
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is a matrix 7, such that 7,4 = BT, mod n and determinant 7,,=1mod »n . By
the Chinese Remainder Theorem, we can restrict our attention to # a
power of a prime p.

Let V(x, y) be the polynomial matrix

ity 250y
1y 25x —yl’

By a computation we obtain V(x, y)4=BV(x, y). Thus, if for each prime
power p* we can obtain integers x and y such that determinant V(x, y)=
1 mod p*, we have shown (iii). Since determinant V(x, y)=25x>—xy—11y?
we must solve the congruence 25x*2—xy—11y2=1mod p=. If p#5, a
solution is y=0, x such that 5x=1 mod p* If p=5, —11 is a quadratic
residue mod 57 for all z. Thus for p=5, a solution is x=0, y such that
—11y2=1 mod 5%

Consider now (iv). Let T=(#;,) be an integer matrix such that 74 =BT.
These linear relations imply that f,=25f,—t,, and fty=11¢t,. The
determinant of T'is 41 if and only if #;,¢,,— 5 t,,= 41, which is equivalent
to 25t5 —tytip—11tH,==+1. Thus to show (iv) we will show that the
equations 25x2—xy—11y?>=41 have no integral solution. Now 25x2—
xy—11y?=—1 has no integral solution for it is unsolvable modulo 3.
Thus we consider only 25x2—xy—11y?=1. Note that if x and y satisfy the
equation, y is relatively prime to 5.

Applying the quadratic formula, (x, y) is an integral solution only if
1101y2+100 is a perfect square. We will show that all solutions (u, y) of
the Pell equation u>=1101y24-100 have the property that y is a multiple
of 5, and hence 25x2—xy—11y%=1 has no integral solution.

First we obtain the minimal positive solution of r2=1101s2+1. We
expand (1101)'/2 into a continued fraction of the form

1
1

a2 + e
and obtain a,=33, a,=5, a,=1, a;=1, a,=16, a;=22, a,=16, a,=1,
ag=1, a,=5, a,,=66, a,,.1,=a, for n>>0. From these values it follows that
the convergents P,/Q, to (1101)Y/2 are given by the table below.

If (u, y) is a solution to the equation u*=1101y2+1, u*—1 is divisible
by 1101=3(367). Hence P,=24313015 is the least possible candidate for a
solution. We have

P, + 1 = 24313016 = 367(8)(8281) = 367(8)(91)2,
P, — 1 = 24313014 = 6(4052169) = 6(2013)?,

a, +
a, +
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i 0,=a,0; 1+Q; P,=a,P, ,+P,_, P,mod367 P,mod3
0 1 33 33 0
1 5 166 166 1
2 6 199 199 1
3 11 365 -2 —1
4 182 6039 167 0
5 4015 133223 2 —1
6 64422 2137607 199 —1
7 68437 2270830 201 1
8 132859 4408437 33 0
9 732732 24313015 -1 1
so that

P2 — 1 = (367)(3)(16)(91)2(2013)2=1101(4(91)(2013))?

and (P, Q,) is the minimum positive solution to u>*=1101y2+41.

Let a=P,+(1101)V2Q,. If (uy, y,) is a particular solution to u?=
1101y24+100, every (x, y) satisfying x+y(1101)Y2=(u,+(1101)*2p,)a" is
also a solution, and this formula yields a class of solutions containing
(uy, y1). If we set b=af(a—1), it is well known that there is a representative
(uy, y1) of each class satisfying

bP, + 1 1/2
o§u1<( ”2+ -100).

We compute 0=u, <34866. Since 0=y, <u,/33 we have 0=y, =<1057.
Using a computer to test all values of y in this range, we find only the two
solutions y;=0, u;=10 and y,=55, u;=1825. Thus there are just two
classes of solutions, and if u, y is any solution to ¥*=1101y2+100, then 5
divides y. Thus the equation 25x>—xy—11y*=1 has no integral solution.

EXAMPLE 2. Let k be an integer greater than 2. There are two k Xk
integer matrices A, and B, with determinant +1 such that:

(i) For each integer n there is an integer matrix T, ; with determinant +1
such that T, ;A= BT, ; mod n.

(i) There is no integer matrix T such that TA,= B, T and determinant T'=
F1.

Let I be the (k—2)x (k—2) identity matrix 0; the (k—2)x2 zero
matrix and 0, the 2 X (k—2) zero matrix. Let 4 and B be as in Example 1.

For k>2 let
I ol} [1 01}
A, = , B,=
k [02 A *~lo, BJ
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I 0
Tn.k= [ T1:|
2 n

where T, is a matrix satisfying Example 1, (iii).

Consider now (ii). If (ii) is false, there is an integer matrix 7" with
determinant +1 such that 74,=B,T. Let T=[& 5] where R is (k—2)x
(k—2), S'is (k—2)x2, Uis 2x (k — 2) and Vis 2x 2. Using block multi-
plication of matrices, TA,= B, T implies

[R SA:I _ ,:R S]
U VAl  |LBU BV]
Thus S4=S and U=BU. Since neither 4 nor B has eigenvalue 1, S=0,

and U=0,. Then determinant Vis a factor of determinant 7"so determinant
V'is £1 and VA=BV. By Example 1, (iv), V" and hence T cannot exist.

To show (i), let

THEOREM 3. The group GL(k, Z) and SL(k, Z) are conjugacy separable
if and only if k=1 or 2.

Proor. We have seen in Theorems 1 and 2 that GL(2, Z) and SL(2, Z)
are conjugacy separable. The groups GL(1, Z) and SL(1, Z) are finite.

Now suppose SL(k, Z) is conjugacy separable. Since A4, is not conjugate
to By in SL(k, Z), there is a normal subgroup N of finite index in SL(k, Z)
such that 4, is not conjugate to B, modulo N. For k>2, it follows from a
result of H. Bass, M. Lazard and J.-P. Serre [1], that N contains a con-
gruence subgroup. Thus there is an integer » such that T4, B, T mod » for
all integer matrices 7' with determinant +-1. But this contradicts Example 2,
(ii). Thus SL(k, Z) is not conjugacy separable for k>2. Since SL(k, Z)
is of index 2 in GL(k, Z), the result quoted from [1] also applies in
GL(k, Z). But then the same argument shows that GL(k, Z) is not con-
jugacy separable for k£>2.

4. The groups GL(n, Z,) and SL(n, Z,). Now let Z, be the ring of p-
adic integers. For each m there is a naturally defined ring homomorphism
&, m from Z, onto the ring I, ,, of integers modulo p™. If 4 is a p-adic
integer matrix, let 4,,=¢&, ,.(4).

Now let 4 and B be elements of GL(n, Z,) such that for all m, 4,, is
conjugate to B, in I, .. Thus for each m we have an integer matrix T,
such that T,4,,=B,,T,, mod p™ and det T,,#0 mod p™. Thus if X=(x, ;)
is an nXn matrix of indeterminates, the equations X4,,=B,X, det X+
yp—k=0, ke(l, -+, p—1), are solvable mod p™ for X and y. Since a
solution mod p™ yields a solution mod p™~* and there are but finitely many
values of k, it follows that there is a single value of k such that X4, =B, X,
det X+yp—k=0, fixed k, are solvable mod p™ for all m. It now follows by
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standard methods that there is a p-adic integer matrix 7 such that T4=
BT and £, ; det T=k#0. But then 7T is invertible and A~B in GL(n, Z,).
Thus GL(n, Z,) is conjugacy separable.

If A and B are elements of SL(n, Z,) and we replace yp+k by —1 in the
above argument, we obtain that SL(n, Z,) is conjugacy separable. We
have proved Theorem 4.

THEOREM 4. The groups SL(n,Z,) and GL(n,Z,) are conjugacy
separable for all n and primes p.

Note that Theorem 4 does not itself imply that the conjugacy problem
is solvable in SL(n, Z,) and GL(n, Z,).
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