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CONJUGACY SEPARABILITY OF CERTAIN 1-RELATOR GROUPS
C. Y. TANG!

ABSTRACT. Let G = (a, b; (a’b™)") where I, m, t are integers. We show that groups
of this type are conjugacy separable.

1. Introduction. The problem of conjugacy separability (c.s.) of groups was first
raised by A. W. Mostowski [13]. This is related to the conjugacy problem for groups
since the solvability of the c.s. problem implies the solvability of the conjugacy
problem. The conjugacy problem for generalized free products (g.f.p.) of two free
groups with cyclic amalgamation was first solved by S. Lipschutz [11]. Later P. Stebe
[15] partially solved the c.s. problem for g.f.p. of two free groups with cyclic
amalgamation. Recently J. L. Dyer [9] showed that g.f.p. of two free groups with
cyclic amalgamation are indeed c.s. In the same paper J. L. Dyer showed that
1-relator groups with nontrivial centers are c.s. (This result was also obtained by S.
M. Armstrong [4].) Thus, in particular, the fundamental group of a torus knot, (a, b;
a'b™), is c.s. The well-known Baumslag-Solitar group [7] shows that not all 1-relator
groups are c.s. since this group is not even residually finite (% ). However in [6] G.
Baumslag conjectured that all 1-relator groups with nontrivial torsion are ;%. The
difficulty of proving this conjecture is well known. Partial results are obtained in [1,
2, 3, 5]. This led us to ask which 1-relator groups with nontrivial torsion are c.s.? In
this paper we show that groups of the form (a, b; (a’b™)’) are c.s. This is because
these groups are g.f.p. with cyclic amalgamation of two special types of c.s. groups.
The proof is based on Solitar’s theorem [12] and a modified approach of Stebe [15]
using a more recent technique developed in [2]. In view of Baumslag’s conjecture and
results in [3, 5], it would be extremely interesting to see whether G =
(a, b; (a~'b'ab™)"y, t > 1, are c.s. Unfortunately it is still beyond the reach of our
present technique. On the other hand the conjugacy problem for 1-relator groups
with torsion is always solvable [14]. This makes the c.s. problem for 1-relator groups
with torsion even more interesting.

2. Preliminaries. We shall make use of the following notations and terms:
x ~ y means that x, y are conjugates in a group.
N <,G means that N is a normal subgroup of finite index in G.
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x is c.d. (conjugacy distinguishable) in G means that if y € G and x ~ y then there
exists N <1, G such that xN = yN in G/N. If every element of G is c.d. then we say G
isc.s. (conjugacy separable).

DEFINITION 2.1 [2]. Let G be a group and x € G. Then G is said to be {(x)-potent,
briefly (x)-Pot, if, for every positive integer n, there exists N <1, G such that xN has
order exactly n in G/N. G is said to be potent if G is {x)-Pot for all 1 #+ x € G. The
class of all potent groups shall be denoted by Pot.

DErINITION 2.2. Let H be a subgroup of a group G. Then G is said to be
H-separable if, for all x € G\ H, there exists N < 7G such that xN &€ HN/N in
G/N.

As a consequence of Solitar’s theorem [12, p. 212], if G = 4 *HB and x = x,x,

“*X,, Y = Y1), *** y, are cyclically reduced words in G, each of minimal length in
its conjugacy class, such that x,, y, € 4 (say) then x ~ y in G if and only if there
exist hy, hy,...,h, € H,such that x; = h; ! y,h,, fori = 1,2,...,nwithh, = h,,.

We also recall Lemmas 3.1, 3.2, 3.3 of [2].

LEMMA 2.1. Let G = A * . B, where (h) is infinite cyclic and A, B are ( h)-separa-
ble and (h)-Pot. If K is a subgroup of A and A is K-separable then G is K-separable.

LEMMA 2.2. Let G = A * B, where A is (h)-Pot. If x € B and B is {x)-Pot, then
G is (x)-Pot.

LEMMA 2.3. The group M = (u, v;(uv)’), t > 1, is {u)-separable, {v)-separable
and also {u)-Pot and {v)-Pot.

3. G={a, b; (a'b™)"). In this section we shall make use of the g.f.p. of certain
special groups with cyclic amalgamation to show that 1-relator groups of the type
G ={a, b; (a’b'")’) are c.s. If / or m is zero it is easy to see that G is c.s. Thus we can
assume m # 0, say. We begin by proving some technical lemmas.

LemMa 3.1. Let S = (b, d;(db™)'y, m# 0, t > 1. Then S is {d )-separable and
{d)-Pot.

PROOF. Let M = (u, d;(du)'y. By Lemma 2.3, M is (d)-separable, and also
(u)-Pot and (u)-separable. Now § = M« _ _(b). Therefore, by Lemma 2.1, S is
{d)-separable. Since M is also {d )-Pot, by Lemma 2.3, and (b} is (b™)- Pot by
Lemma 2.2, S is {d )-Pot.

LEMMA 3.2. Let S = (b, d; (db™)' ), m # 0, ¢t > 1. If s, w € S such that s # d°wd®
for all integers o and B then there exists N < 7S such that § # d*wd® for all a and B,
where § = sN, d = dN and w = wN.

PrOOF. Let D = (d). If w € D then, by Lemma 3.1, the lemma is true. Therefore
we can assume w & D. Now s 5 d*wd” for all «, B8 implies that w™'s % w™'d*wd#
for all @, B. Since S = (b)*{c; ¢') with d = cb™" it follows that if w & D then
[w, d*] # 1 and (w™'dw, d) is a free subgroup of rank 2 in S. Let x = w™ 'dw and
H = (x,d}. Now, by [8], S is an M. Hall group. Therefore H is a free factor of a
subgroup X of finite index in S. Let K = L*H.
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Case 1. w™'s & K. Since | S: K|< oo, it follows that there exists N <1 .S such that
N C K. Now w™!s & K implies w™'s & H. In particular w™ s 5 x°d” for all integers
a, B. Moreover N C K implies that w™'s # x°d®, for all a, B, in G/N, whence
§ % d*wdP, for all @, B, in G/N.

Case2.w 's€Kandw™'s¢ H. Letw 's=gh, ---g,h,whereg, € L,h, EH
and g;, h; # 1 except possibly for g, or h,. Now, by [1], S € z¥. Therefore K € ;%
and L € 9. Thus there exists ¢: K - K where K = L¢+H¢ such that Lo and Ho
are both finite with g,¢ # 1, h,¢ # 1. Now w™'s & H. This implies that (w™'s)¢ &
Hé. Since H¢ is finite and K € F, it follows that there exists ¢: K — K’ such that
K’ is finite and (w™'s)¢y & Hoy. Let N = ker ¢y. Then | S: N |< co. Hence there
exists M <1, such that (w™'s)M & HM/M. This implies w~'5 # x°d¥, for all
integers a, B, in G /M, whence § # d*wdP, for all a, 8, in G/M.

Case3.w™ s € H. Let w™'s = x*dP - - . x*dP» where a;, B; are not zero for all i,
except possibly for a, or B,. Moreover, since w™'s 7 x°d# for all integers a, B we
can assume n > 1. Now K = L«H and H € z%. Thus it is not difficult to see that
using a similar argument as in Case 2, there exists N <1, such that 5 # d*wd*, for
all integers a, 8, in G/N.

This completes the proof.

LeMMA 3.3. Let G be a group and g, h € G such that [h™'g"h, g™] # 1 where
| g|= mp', p a prime and (m, p) = 1. If h™'g"h = g* then p divides both r and s.

PROOF. Suppose p {r. This means (r, p') = 1. Therefore there exist integers a,
such that ar + Bp’ = 1. This implies amr + Bmp' = m. It follows that (h~'g"h)*"
= h~g™h = g*>™ But this implies that [A~'g"h, g™] =1 contradicting the hy-
pothesis that [A~'g™h, g™] # 1. Hence p | r.

On the other hand if p} s then (s, p*) = 1. Thus there exist integers a, 8 such that
as + Bp’ = 1, whence ams + Bmp’ = m. It follows that

(h—lgmh)"" — (h—lgrh)“m — gams — gm.
But this again implies that [#~'g™h, g™] = 1, contradicting the hypothesis of the
lemma. Hence p | s.

LemMMA 3.4. Let S = (b, d;(db™)'), m#*0, t>1, and let G = S*d=a,<a). Let
X=XXy "X, andy =y, y, - Y, 0 > 1, be cyclically reduced words in G such that
x =y in G. Suppose, for each i, there exist integers a;, B; such that x;, = d~%y,d":.
Then there exists 0: G — G such that G is finite and x8 = y8 in G.

ProorF. WLOG we can assume x,, y, € 4 = (a). Thus x,,, y,;, €ES. By B. B.
Newman [14], the centralizer Zy(d) of d in S is cyclic. In fact Zy(d) = (d)= D.
Since [x,;,_,, d] =[y;;_1,d] = 1, WLOG we can let x,,_, = y,,_, wherei = 1,...,k
and n=2k. Thus we can assume a,,_, = f8,,_; = 0. Consider the differences
Ay =ay = By Ay =y — By .., Ag = ay — Byi—y)- If all the Ay, are zero then
x ~ y.in G contradicting the assumption x ~ y in G. Hence at least one of the A,; is
not zero. Let p be a prime which does not divide at least one of the A,,.

Next, consider S = (d, b; (db™)"). Since db™ is primitive in the free group {(d, b),
by Fischer, Karrass and Solitar [10], S is free-by-finite. Let F be a free normal
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subgroup of finite index in S and let | S: F|= p°A where (p,A\) = 1. If s € § and
s @ F then there exists an integer f such that f| p°A and s/ € F.

By Lemma 3.1, S is D-separable and D-Pot. Thus there exists N, < 7S such that,
for all i=1,...,k, x,, y,;  DN,, d*3, dP» @ N, and [x;,'d*x,, d¥],
[v5; 'd%y,;, d¥] & DN, for all g|\. Since F<1,S and F is free, whence a residually
p-group, we can assume | S/N, |= p"A. In the same way, since 4 is both D-separa-
ble and D-Pot, there exists N, < 4 such that x,,_,, y,;_, & DN, and that |4 /N, |=
p"p. Moreover, by the D-potency of S and A4, N, and N, can be chosen such that
DNN =DNN,.

Let ¢ be the canonical map of G onto G= S* A, where S = S/N,, A = A/N,
and D = D/N, N D. For convenience we shall use Z to denote z¢ for z € G. Let the
order of d be p*\’ where X' | A. Now, in G, [ 75; 'd¥y,;, d¥] # 1 and %,, = d~*3,,dP>.
If also x,, = d~"*7,,d%* then

)72_’ lJ“n‘Yz.')jzi = d_—_(szi_ﬂzi).

Thus, by Lemma 3.3, p | a,; — v,; and p | 8,; — B,;. On the other hand [X,,_,, d] = 1
implies that we can let v,,_, = 8,,_, = 0. Hence a; = y;(p) and B; = §;(p) for all
j=1...,n

Now X ~ y in G if and only if there exist integers v,,, 8,, such that x,, = d~ "2 3,,d%»
with d"2 = d%=, dv = 4% ... d*» = d%u-v_ Since p divides the order of d, this
means p divides each of v, — 8,4, Y4 — 8,,..., %2, — 8yx—1)- It follows that p divides
each of the A,;, contradicting the choice of p. Hence X ~ y in G. Since § and A4 are
both finite, by [9], G is c.s. Thus there exists ¥: G — G such that G is finite and
Xy = Y in G. Let = ¢y. Then x8 < yf as required.

THEOREM 3.5. G = (a, b; (a'b™)") is c.s.

PROOF. If / or m = 0 then G is a free product of cyclic groups, whence G is c.s.

Thus in the following considerations we shall always assume /, m # 0. If ¢t = 1
then G has a nontrivial center. Thus, by Armstrong [4] (or Dyer [9, Theorem 12]), G
is c.s. Hence we need only consider the case when 7 > 1.

Let S=(b,c;c"). Clearly S = (b)*(c;c') is c.s. Let d =cb™™. Then S =
(b, d;(db™)'). Further if we let P = S« _  (a) then P = (a, b; (a'd™)'y=G. We
shall show that P is c.s. By Lemma 3.1, S is (d)-separable and (d )-Pot. Since
(ay= Ais {a')-Pot, i.e. (d)-Pot, by Lemma 2.2, P is (d )-Pot.

Now let x, y € P such that x =y in P. We can assume x, y to be cyclically
reduced as words on S and 4. Moreover we can assume x, y to be of minimal lengths
in their conjugacy classes. We use ||z|| to denote the cyclically reduced length of
z€P (12, p. 212]. If lIxll == llyll, let x=x,---x,, y=y,-**Y,, n #*m, be
cyclically reduced. Since S and 4 are (d )- separable and (d)-Pot there exist N < /S
and M <,A4 such that NN D=MN D and x,N, yMES\D for x;, y, € S\D
and x;N, y;M EA\D for x;,y, € A\D, where S = S/N A= A/MandD D/N
N D. Let ¢ be the canonical homomorphism of P onto P = S *5 A. Then ||x|l =
Ixepll # Il yoll = [l yll. Thus |[x¢|l and || yp|l are each of rmmmal lengths in their
respective conjugacy classes with x¢ = y¢. Since S and A are finite, P is c.s. Hence
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x, y are c.d. in P if ||x|l # |l yll. Thus we need only consider the cases when
hxll =yl

Case 1. lIxll = llyll =0. Since S and A are cs., this implies that there exist

<1,8 and N, <4 such that the respective images of xand y in S/N, and A /N,
are not conjugates. Let N, N D = (d*) and N, N D = (d*), where D = (d ). Since
P is (d)-Pot, there exists M <1, P such that M N D = (d*Fy. Let M, = M N N,
and M, = M N N,. Then, clearly, M, N D= M,N D={d**)y. It follows that P
can be mapped onto P= S* A, where § = S/M,, A=A/M,and D= D/{d**).
Since S and 4 are finite, by Dyer [9 Theorem 1], P is c.s. Now, by the choice of M,
and M,, the images of x and y in P are not conjugates in P. Hence x and y are c.d. in
P.

Case 2. x| =llyll=1. Suppose x, y €S or x,y € A. Then by a similar
argument as in Case 1 we can show that x and y are c.d. in P. Thus we can assume
x €S and y € A. Now any homomorphic image of A4 is cyclic, whence the
corresponding image of y has only itself in its conjugacy class. Let 6 be the canonical
map of P onto P = P/S”. Then P = (af;(ab)'). Since ||yl = 1, it follows that
y6 # 1. On the other hand x € S implies that x6 = 1. Hence x and y are c.d. in P.

Case 3. | x|l = |l yll = 2. We can assume that x = x,x, - - x,and y =y, - ),
are cyclically reduced words in P such that x|, y; € 4 and x,,, y,; € S where
i=1,2,...,k and n = 2k. If there exists an integer j such that x,; & Dy, D, where
D={(d ) then by Lemma 3.2, there exists N <I,S such that X,; & Dy, D ;D, where
X,; = X3;N, y,; = y,;N and D=DN/Nin S/N. Now S and A are both D-separa-
ble. Thus there exist N, <0/S such that x,; & N;D and N, <,4 such that x,;, |, &
N, D for all i. Since S and A are both D-Pot, there exist M, < S and M, <, A4 such
that M\, CN NN, M, C N, and M, N D = M, N D. Let 6 be the canonical homo-
morphism of P onto P = S* . Awhere $ = S/M,,A = A/M, and D= D/M, N D.
Clearly x, 0 & D(y, 10)D Hence by Solitar’s theorem, x6 = y@ in P. Since P is c.s.
it follows that x and y are c.d. in P. On the other hand if x; € Dy, D for all i, then,
by Lemma 3.4, again we have x and y to be c.d. in P.

This proves that G is c.s.
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