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1. Introduction.

The residual nilpotence of a free product G = ;¢ G; is studied in [6].
There Malc’ev gives (separate) necessary and sufficient conditions, which,
in general, do not constitute a characterization. A characterization for the
residual nilpotence of a free product has been given by Lichtman (Th. 1
of [5]). On the other hand Raptis and Varsos in [8] give a characterization
for the residual nilpotence of HHN-extensions with base group a finite or a
finitely generated (f.g.) abelian group.

Here we study the residual nilpotence (via the residual finiteness-p)
of the fundamental group of a graph of groups. First we deal with the case
where the vertex groups are finite (Th. 6), where we reduce the general case
to the case of finite p-groups. If the graph is finite we give a characterization
(Prop. 7), which in the case where the vertex groups are finite abelian p-
groups is given by an internal condition on the edge groups (Prop. 11).
Second, we study the case where the vertex groups are f.g. abelian groups
and give a necessary condition (Prop. 14). Finally we study the case of
a specific kind of tree products and give a characterization if the vertex
groups are finite abelian p-groups (Th. 13) and a sufficient condition if the
vertex groups are f.g. generated free abelian groups (Cor. 15.1).

These results extend the results of [4] and [8].

2. Definitions and preliminary results.

Definition. A group G has the property X residually if to every element
g € G, g # 1, there exists a normal subgroup N of G such that ¢ ¢ N and
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G/N has the property X'. We also say that G is residually X’ abbreviated
to (RX).

It is clear that a group G is RA if and only if the normal subgroups
whose factor groups have property &' intersect in the trivial group. It fol-
lows that a group G is residually nilpotent (RAN) if and only if N,,v,(G) = 1,
where 7, (G),n € N, is the n** term of the lower central series of G.

If a group G is residually finite-p (RF,), p-prime, then it is RN.
But a RN group is not necessarily a RF, group. In the class of finitely
generated groups residual nilpotence and residual p-finiteness coincide for
certain primes p described in [3] (Th 2.1 (ii)).

A graph of groups £(G,X) is a connected graph X, where to each
vertex v € V(X)) is assigned a (vertex) group G, and each edge e € E(X),
with initial and terminal vertices ¢(e) and 7(e) respectively, is assigned
two isomorphic (edge) subgroups H,() < G,(e), Hr(e) < Gr(e) Via an iso-
morphism 0. : H,e) — Hq) (07! = 6z, where € is the inverse of e
with «(€) = 7(e), 7(€) = t(e)). The definition of the fundamental group
G = 7(G, X) of a graph of groups £(G, X), relative to a maximal tree T of
X, is given in [10] (§1.5), where it is also proved that the structure of G is
independent of the choice of the maximal tree 7.

There may exist edges e € E(X) for which the assigned edge groups
are trivial (H,(y = Hr() = 1). We consider two sets of edges with trivial
edge groups:

(i) Let EC(X) be a maximal set of edges e of X such that H,.) =
H,)=1and X = X \ EC(X) is connected. It may be that EC(X) = 0.
The fundamental group of £(G, X) has the structure (G, X) = F*7(G, X),
where F is a free group with (free) generators the (free) generators of
7(G, X) which correspond to the edges of EC(X).

(ii) Let ET(X) be the set of edges e of X such that H,o) = H,) =1, €
is not in EC(X) and e disconnects X. It may be that ET(X) = 0. If
e € ET(X), then X = X, ey U{e} U X,(c), where X, and X, () are con-
nected components of X joined by e, and the fundamental group has the
structure 7(G, X) = (G, Xu(e)) * (G, Xy (e))

Therefore according to the discussion above the fundamental group
has the structure 7(G, X) = F % (xn(G, X;)) where F is a free group with
rank |[EC(X)| and x7(G, X;) is a free product with |[ET(X)|+ 1 factors and
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in each factor 7(G, X;) none of the edge group is the trivial group. Since
for a free product of groups there exists a characterization of the residual
nilpotence (Th. 2.1 of [5]), in the following we suppose, without any further
mention, that the edge groups are not trivial. We can also suppose that
each edge group is a proper subgroup of the corresponding vertex group,
unless we have a loop («(e) = 7(e)), where it may happen H,.) = G,).
In the case where the graph is a loop and the vertex group is a finitely
generated abelian group we have a characterization (Th. 2.4 of [7]).

Let £(G,C) be a graph of groups, over the circuit C' with vertices

vi,...,v, and edges ej,... ,€,, where ¢(e;11) = 7(e;) = v,41, t =1,...,
n—1 and ¢(e1) = 7(en) = v1. Let G,(.,) be the vertex groups and
H,0c; = Hr(,) the corresponding edge groups for i =1,...,n (cf [10]

p. 15). In the fundamental group G = 7(G,C) we have the relations
HL(e,-) = HL(e,) =0, = rei) b =1,... ,j—1,7+1,... ,nand t_lHL(e])t =
Hyc;)0e; = Hr(,)- The generator ¢ of 7(G,C) corresponds to the edge
e; € E(X), which is omitted to obtain a maximal tree. Let 6; = 0., o
fe,py ©---0Tp 008, _,, where in the composition each 0., acts as the
restriction of the initial f., on a subgroup of H,(, ) and 7; is the inner
automorphism induced by t. For i = 1,... ,n let N; = {K < G (e;) such
that (K)0; = K}. For K, L € N, it is easy to see that the subgroup M =
(K, L) belongs to N;. So the set H; = U{K € N;} is a subgroup of G,
with the property; (H;)8; = H; and if N < G,y with (N)§; = N, then
N < H;. In this sense the subgroup H; is the “largest” subgroup of G, ;)
with this property. From the way the subgroups H; are defined and from the
relations of the fundamental group (G, C), it is easy to see that H; = H,
for every i,7 € {1,... ,n}. The homomorphisms 6; are automorphisms of
H = H;. Moreover, we have H0; = H;0; = H;0., 00;,06_'. The subgroup
H is called the core of the circuit C.

Remark. If the graph Y is a part of a larger graph of groups £(G, X), then
L(G,Y) is a subgraph of groups of £(G,X) and the fundamental group
7(G,Y) of £L(G,Y) is embeddable in the fundamental group 7(G, X) of
L£(G,X) (cf. [2] §2).

If £(G, X) is a graph of groups and 7' is a maximal tree of X, chosen to
obtain a presentation of the fundamental group G = (G, X), then there is
an 1—1 and onto correspondence between the edges of X omitted to obtain
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the maximal tree T" and the (free) generators of G. Let G = m(G, T) be the
fundamental group over T' with vertex groups Gy, v(i) € V(X) = V(T')
and edge groups H (0. = H.(.), ¢ € E(T). By contracting the maximal
tree T to a point (cf. [10] or [2] §2), the resulting graph of groups is a
bouquet of cycles, where to its single vertex is assigned the group Gt and
to its loops are assigned the (isomorphic) subgroups (H,(,))0e; = Hr(c,)
where e; € E(X) \ E(T). So the fundamental group G = 7(G,X) has
the presentation G = #(G,X) = (t;,Gr | tj—lHL(e].)tj = H.;), € €
E(X) \ E(T)) of an HNN-extension. The core H; of each loop in the
presentation of G as an HNN-extension is the core of an original circuit C;
in X with e; € E(C}).

Lemma 1. Let G be a group. Suppose that for some g € G, g # 1, the
equation z?" = g, p-prime, has solutions for infinitely many n € Z+. Then
the group G is not RF,.

Proof. Let N be a normal subgroup of G such that ¢ ¢ N and |G/N| = p™.
For n > m there exists z € G with zP" = g, which imiplies g € N. So G is
not RF,. O

A simple example of a group which is abelian but not RF,, is the
quasicyclic p-group Cpoo = (ay,az,... | df =1,a? | = a;).
As a Corollary of Proposition 2 of [8] we have:

Proposition 2. The semi-direct product G = K|kH of a finite p-group K
by a RF, group H is RF, if and only if it is RN

Proof. Suppose that G is RNV. Let # : H — AutK be the induced ho-
momorphism via the semi-direct product G = K]H. Let h € H be such
that hm € AutK has order o(hr) = p® - q, ¢ # 1,(p,q) = 1. Then for
every k € K we have (k)hm = h~1kh, but there exist k& € K such that
h=P kh?® £ k. So [k, h?'] # 1 with [k, kP ] = [k, h?"7] mod 73(G) and
[k, R?*1°® = [k°®) h?*'] mod ~3(G). Therefore [k, h*‘] € 73(G). Similarly
[k, h”e] € vn(G) for every n € N, a contradiction. So every element of Hm
has an order of power p and the result follows by Proposition 2 of [8]. 0O

The following proposition is a generalization of Lemma 3 of [8]. The
proof is similar and it is omitted.
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Proposition 3. Let £(G, X) be a graph of groups over the connected finite
graph X with vertez groups G, v € V(X) finite p-groups. The fundamental
group g = (G, X) is RF, if and only if it is RN

Corollary 3.1. Let £(G,X) be a graph of groups as in Proposition 3 and
C be a circuit in the graph X. Suppose that the fundamental group (G, X)

is RN, then the automorphism 0; of the core H of C defined above has
order a power of p.

Proof. Tt is immediate from Propositions above and Proposition 2 of [8]+ O

Lemma 4. Let £(G, X) be a graph of groups over the graph X with vertex
groups G, v € V(X). Suppose that the equation ™ = g, for a g € 7(G, X),
has solutions for infinitely many n € Z+. Then g belongs to a conjugate of
a vertex group. So every solution x, of z™ = g belongs to a conjugate of a
vertex group.

Proof. Without any loss of generality we can suppose that g is cyclically
reduced with reduced length I(g) > 2. (For the definition of the length of
g see [2] §1.11). Then for infnitely many n € Zt we have g = r12%r,,
with r,,z, € G and z, cyclically reduced. If l(x,) > 1, then we have
Tl = rpgryt with 27 cyclically reduced and {(z?) = n - l(z,). Thus the
cyclically.reduced length of g is arbitrarily large, a contradiction. Whence
l(zn) = 1, which implies that z,, and g belong to a conjugate of a vertex

group. U

3. The residual p-finiteness of the fundamental group of a graph
of finite groups.

Proposition 5. Let £(G, X) be a graph of groups over the connected graph
X with finite vertex groups G,, v € V(X). Suppose that the fundamental
group G = 7(G, X) 1s RN. Then we have:

(i) The vertez groups G,, v € V(X) are nilpotent groups.

(ir) There exists a prime p such that |G, : Hye)| = P (v = (e)),
forallv e V(X),e € E(X).

(iii) There exist pq,... ,pr primes such that for each v € V(X)
G, = ]_[1:21 Sp, (Gy), where S, (G,) is the ps-Sylow subgroup of G.,,.

Proof. (i) Since the group G is RN and the vertex groups finite, they must
be nilpotent.
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(i1) Let H, () be an edge group which is proper subgroup .of the vertex
group G, (v = (e)). So H,) N S,(G,) is a proper subgroup of S,(G,)
for a prime p. Suppose that for another vertex group G, there exists an-
other prime ¢ such that the edge group H,(), (u = t(e’)), is proper and
H, ey N S4(G.) is a proper subgroup of S,(G.). Let a € S,(G,) \ (H, () N
Sp(Gr)), a #1and b € Si(Gu) \ (H,(er) N Se(Gu)) Nb # 1. Then [a,b] #
1 and [a,b]°®) = [a°®) b] mod 73(G), [a,b]°® = [a,5°®)] mod ~3(G).
So [a,b] € ~3(G), because (o(a),o(b)) = 1. Similarly, [a,b] € v,(G) for
every n € N, a contradiction, since G is RN. So H,,) N S,(Gy) is a
proper subgroup of S,(G,) for the same prime p for all v € V(X) and
e € E(X),(«(e) =v).

(iii) Since |G, : H,()| = p"® for all v € V(X), e € E(X), t(e) = v,
we have H, (o) = A,e) X K (e), where A,y < Sp(Gy) and K o) = Sy, (G) x

- X Spk(Gv) (lf b = pl). But (Hb(e))Ge = 7(e)y SO H,.(e) = A.,.(e) X
K¢y with K oy = Sp,(Gu) X --- X 85, (Gy), T(e) = u and S, (G,) ~
Sp.(Gy), s =2,...,k. Finally, since X is connected, G, = H’:zl Sp. (Gy)
for each v € V(X) with the same primes py,... ,px. O

The proof above contains implicitly the proof of the:

Corollary 5.1. With the assumptions of Proposition 5, for e € E(X) the
subgroups K,y are normal in G.

Proof. Let G, be a vertex group. Then from the proposition above we
have that K, () = K,(.) for every e,e’ € E(X) with «(e) = ¢(e) = v, let
K, = K,(). So (K,)0. = K,, where u = T'(e), for each e € E(X). Let T
be a maximal tree of X, from the defining relations in G we have K, =
(K,)0. = K, for each e € E(T) with 1(e) = v, 7(e) = u, and ¢ 1 K, t. = K,
where t. is the generator corresponding to the edge e € E(X) \ E(T) with
t(e) = r, T(e) = s. But the graph is connected, so we have K, = K, for
every v,u € V(X) and finally g7*K,g = K, for g € G, since each K, is
normal in the vertex group G,. O

It is easy to see that the normal subgroup K = K,, for every v €
V(X), belongs to the core of every circuit C of the graph X.

If we preserve the same underlying graph X and assign to each vertex
v € V(X) the ps-Sylow subgroup of G,, say S, (G,) we have for every
s =1,...,k a graph of groups £(G,,,X) with edge subgroups S, (G,) N
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H,(e) =~ Sp,(Gu) N Hy(c) for the edge e € E(X) with w(e) = v, 7(e) = u.
The fundamental groups G, = 7(G,,, X) for s = 1,... , k are subgroups of
G = (G, X). From previous Corollary we have that each G,,, s = 2,... ,k,
is the semi-direct product of S, (G,) by a free group F = {t,,, m € A) of
rank 7(F) = |E(X)\ E(T)|, where T is a maximal tree of X. Since it is
supposed that the fundamental group G is RN/, from Proposition 2 each
Gp, is RFp, for s =2,... k.
We can now state the converse of the Proposition 5.

Theorem 6. The fundamental group G = 7(G, X) of the graph of groups
L(G,X), where X is connected and the vertex groups G, are finite, is RN
if, and only, if we have:

(i) The vertez groups G,, v € V(X) are nilpotent groups.
(ii) There exists a prime p such that ‘Gv cHyey| = "), (v = ue)),
for allv € V(X),e € E(X).
(iii) There exist p1,...,pr primes such that for each v € V(X) G, =
1t Sp.(Gy), where S, (G,) is the ps-Sylow subgroup of G, .

s=1
(iv) The group Gp, = n(Gp,,X) is RN, where p = p;.
(v) For every circuit C' of X with core H, we have: The automorphism
6;, defined above, has order divided only by the primes, which appear

in the orders of the vertex groups of C.

Proof. If the fundamental group G = 7(G, X) is RN, then (i)-(iii) follow
from Proposition 5 and (iv) follows from the fact that the group G,, =
7(Gp,, X) is a subgroup of G = 7(G, X). Let C be a circuit of X with
vertex groups G1,... ,Gy and core H.. Foreach s = 1,... ,k let C,, be the
(sub)circuit of C with vertex groups S,,(G;) i = 1,...n. The fundamental
group of each C;,_ for s = 1,... , k is a subgroup of 7(G, X), so it is RF,, by
Proposition 3. It is easy to see that the core H. of C is the direct product
of the cores H, of Cp, s=1,... ,k and (v) follows from Corollary 3.1.

Conversely, the normal subgroup K = H§=2 Sp. (Gy) (Corollary 5.1)
has the property G/K ~ G,,, therefore N,7,(G) < K, Since G,, is RN
If N = (S,,(G,),v € V(X))¢, then G/N ~ K]F, where F is the free
group F' = (t,,,m € A) defined above. From (v) and Proposition 2 (cf.
the converse in the proof of Th. 4 of [8]) we have that K]F if RN, so
MnYn(G) < N and finally N,7,.(G) < KNN=1. O
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The previous Theorem reduces the problem of the residual nilpotence
of the fundamental group of a graph of finite groups to the problem of the
residual nilpotence of the fundamental group of a graph of finite p-groups.

In the case where the graph is a segment or a loop there is a charac-
terization of the fundamental groups (Theorem of [4] and Th. 13 of [8]). In
the general case of a finite graph of finite p-groups the residual nilpotence
and the residual p-finiteness coincide (Prop. 3) and we have an analogous
proposition of the Proposition 1 of [8]. The proof is similar and it is omitted.

Proposition 7. Let £(G, X) be a graph of groups over the connected fi-
nite graph X with vertez groups G,, v € V(X), finite p-groups. The
fundamental group G = w(G,X) is RF, if and only if there exists a fi-
nite p-group Y, such that the vertex groups G, are subgroups of Y and for
each generator t, of G there is a g. € Y such that TgelH, oy = O, where
Hiey = Hye)fe = t; Hyoyte, e € E(X)\ E(T), where T is a mazimal tree
of X. O

A necessary condition for the RF, of the fundamental group G =
(G, X), which depends upon an internal condition on the edge groups,
is given by Corollary 3.1. In the case, where the vertex groups are finite
abelian p-groups, we can give a sufficient condition, which depends on the
isomormorphisms associating the edge groups.

Before stating this condition we shall give the following necessary
background.

As it is known every finite abelian p-group K has a decomposition
K = (C; xCy x --- x C, as a direct product of cyclic subgroups with
|C;| = p™ and my > mg > --- > m,. The number n depends upon the
group G and it is the p-rank of K(r,(K) = n).

Lemma 8. Let K be a finite abelian p-group and H < K with r,(K) =
rp(H) =71 If o € Aut(H), then there exists a finite abelian p-group X with
mp(X) =7 and g € Aut(X) such that K < X, 5|5 = ¢ and o(p) = o(y).

Proof. This comes from the proof of Proposition 3 of [1] by taking A =
B = H where it is easy to see that o(@) = o(p). O

Lemma 9. Let K be a finite abelian p-group, A, B< K and p: A — B
an isomorphism. Then we can find a finite abelian p-group X and an
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automorphism 0 of X such that K < X,0(f) = p° for some ¢ € N and
0la = @, if and only if o(py) = p¥ for some v € N, where H is the
“largest” subgroup of K such that Hp = H.

Proof. If H = 1, then we have Lemma 6 in [8]. Suppose that H # 1 and
the order of ¢y is not a power of p, then it is clear that there is no group
X such that K < X and 6§ € AutX with o(f) = p° and 6y = ¢. So we
may assume that the order of |y must be a power of p. Let {k1,... &}

be a set of generators of K such that H = (kfml,... JkP™), s < r and
L = (ky,...,k.). Namely L is a minimal direct factor of K such that
H < L(r,(L) = 7,(H)). The isomorphism ¢ induces an isomorphism @ :
A/H — B/H, since the “largest” subgroup of K/H with the property
(M/H)pg = M/H is the trivial group, the groups K/H, A/H,B/H and
the isomorphism @ satisfy the assumptions of Lemma 6 in [8]. So there
exists a finite abelian p-group Y such that K/H <Y and 6; € Aut(Y)
with o(f1) = p** and 0yj4/n = . The groups L, H and the isomorphism
@ satisfy the assumptions of the previous Lemma. So there exists a finite
abelian p-group W such that L < W and 6; € Aut(W) with o(62) = p*2
and by = .

Let K = N x L, for every element k € K there exist unique z € N,y €
L such that k = z - y. Since H < L, it is easy to see that the map f: K —
K/H x L with kf = (kH,y) defines a monomorphism. So X can be chosen
to be the direct product X = Y xW and 8 be the automorphism 8 = (61, 63)
which satisfy the requirements of the statements. [

Remark 1. The hypotheses in the Lemma above are the same as in Propo-
sition 7 in [8], but the result is sharper, since the group K is embedded in
a finite abelian p-group X.

Remark 2. Tt follows from the proofs of the Proposition 3 in [1] and Lemma
6 in [8] that the group X has a decomposition as a direct product of cyclic
subgroups of the same order, say p”, which is equal to the maximal order
of the elements of the group K.

Proposition 10. Let K be a finite abelian p-group, Ay, B1,A2, By < K
and oy : A1 — Bi,pq 1 Ay — By isomorphisms. Then there exists a finite
abelian p-group V with K <V, 01,02 € Aut(V) with o(61) = p*,0(02) =
p*? and 014, = ¥1,02)4, = w2 if and only if there exist v1,va > 0 such that
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o(p1)H,) = p¥i,0(p2H,) = P"?, where Hy, Hoy are the “largest” subgroups
OfK such that H1(p1 = Hl,HQ(pQ = H‘Z.

Proof. The previous Lemma ensures the existence of a finite abelian p-group
X and an automorphism #; € Aut(X) such that K < X, 614, = ¢1 and
o(6;) = p* if and only if o(p1m,) = p**. Again, by Lemma 9, we can
embed the group X into a finite abelian p-group, say V, such that there
exists an automorphism 8 € Aut(V) with 024, = @2, o(02) = p* if and
only if o(yp2g,) = p**. From the remark 2 above the elements of maximal
order of the group V have the same order p". So V = X x N, whence
the automorphism #; of X can be extended easily to an automorphism
f; € Aut(V) with the required properties and we have finished. O

Let £(G, X) be a graph of groups over the tree X, with vertex groups
G,, v € V(X), finite abelian p-groups of bounded p-rank. Let G,) be a
vertex group of maximal p-rank (k = Tp(Go(0)) = Tp(Gui)); v(i) € v(x)).
Let R = C; x --- x Cx be the direct product of k copies of the quasi-
cyclic p-group Cpoo. Let €p : Gyo) — R be the (obvious) embedding
of Gy(0) in R. In the fundamental group G = =(G, X), if a neighbour-
ing vertex group of G,(g) is the Gy(1), We have H, )0 = Hrg) for the
edge groups (i(e) = v(0),7(e) = v(1)). So we have an embedding € =

0-1 o€ : Hrey — R. Let Hre) be a minimal direct factor of G, (1) such
that H, () < F,(e)((rp(H,(e)) =r,(H.(e)) and G1 = FT(C) x Ly)). Since R
is divisible, ¢; can be extended to a monomorphism €; : H,y— Rand fi-
nally, since 7, (G, (1) < 7p(Gy(0))), we can have an embedding e; : G,(1) — R

(The complement L; of Ff(e) in Gy(1) s embedded into M;, a complement

of ﬁT(e)el in R, where FT(E)Q is a minimal factor of R of TP(FT(e)) many
copies of Cpo0 such that ﬁf(e)el < FT(e)el, (R= FT(e)el x My)). Sim-
ilarly continuing we can embed all the vertex groups Gy, v(i) € V(X),
with monomorphisms €; : Gy(;) — R. Since in the fundamental group we
have the relations H,(e)fe = Hy(e) for e € E(X), the monomorphisms ¢;
can be extended to a common homomorphism € : G =n(G,X) — R. The
pair (¢, Ge) is a realization of m(G, X ) in R with respect to the vertex groups
Gy, v(i) € V(X) (cf. [9]). It is easy to see that Ker e N G,y = 1 for
v(3) € V(X). Therefore the kernel of € is a free group.

Let £(G, X) be a graph of groups over the connected finite graph X
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with vertex groups finite abelian p-groups. Suppose that in each circuit
C with core H the induced automorphism ¢ has order a power of p. If T
Is a maximal tree of X and Gr = 7(G,T) the corresponding fundamental
group over T' with vertex groups G,(;), v(i) € V(X) = V(T) and edge
groups H 6. = H.(), e € E(T), then in the realization (e,Gre) of Gr
the image (Gr)e = K is a finite abelian p-group. For each e; € E(X)\
E(T) the isomorphism fe,, where (H,( ))f.,, induces an isomorphism @;
(HL(ej))e — (Hr(e,))€ in the realization of G,. By Proposition 10 there is
a finite abelian p-group V with K < V and 6,0,,... .0, € AutV with
o(8;) = p*s, 0;1H,e = ¥;, where H; are the cores of the loops in the resulting
graph of groups by contracting the maximal tree T to a point. Let Y be the
subgroup of the holomorph of V' defined by the right regular representation
R(V) of V and the group W = (61,6,,...6,) (Y = R(V)]W). The map
€:G =m(G,X) — Y defined by G, = G,y for v(i) € V(X) and
t;€ = 0; for each generator which corresponds to the loop with core H j, is
well defined. The map € is a group homomorphism because the relations of
the type tj_lH,v(ej)t]- = H,(;) in G = 7(G, X) are sent to Hj_lHL(ej)C 0 =
(H(e;)€)0; = Hp(,yeinY by €. Also Ker eNG, ;) = 1, since Ker €NGyu) =
1.

We are now in a position to state.

Proposition 11. Let £(G,X),V,W,Y be as above. If W is a finite p-
group, then the fundamental group G = n(G, X) is RF,.

Proof. The group G is free by finite-p, since Ker € is a free group. 0O

The necessary condition stated in Corollary 3.1, where each automor-
phism 6; corresponding to the circuit C;, considered by itself, must have
order a power of p, is not known to be sufficient, becasue we do not know
if the group W = (01,0, ... ,6,) is a p-group.

Let £(G, X) be a graph of groups with the properties

(i) The graph X is a tree.

(ii) There is a vertex v(0) called the vertex of level zero.

(iii) The vertex v(0) is joined with vertices of level one. Inductively
a vertex v(n) of level n > 0 is joined by an edge to exactly one vertex of
level n —1 (since X is a tree) and either it is a terminal vertex or the other
vertices joined with it are of level n + 1.
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(iv) All the vertex groups, except (possibly) the vertex group G
of level zero, are finite abelian p-groups.

(v) If G,(5), Gy(i41) are two vertex groups of levels ¢ and 7 + 1 linked
by the edge groups H,(ey = H (), (t(e) = v(i), 7(e) = v(i + 1)), then
p(Hr(e)) = mp(Guivn))-

The graph £(G, X)) with the properties (i)-(v) is said to be a graph
of strong cohesion. So if G, (o), Gy(1)s--- ,Gu(n),--- are the vertex groups
along a path with starting point the vertex of level zero, then there exists
an index ng such that r,(G,) = 7,(Gn,) for every n > ny.

Lemma 12. Let £(G,X) be a graph of strong cohesion, where the expo-
nents of Gy, v(i) € V(X), i # 0 are bounded. The fundamental group
G = 7(G,X) has infinitely p-divisible elements if and only if the vertezx
group Gy has.

Proof. Suppose that the equation g = 7", g # 1, has solutions for infinitely
many n € N. By Lemma 4, the element g and every root of zP" = g
belong to conjugates of vertex groups. Let p™ be an upper bound of the
exponents of Gy, v(i) € V(X) i # 0, then 2" =1 for every z € G
for all v(i) € V(X) i # 0 and n > m, a contradiction, unless the roots of
z?" = g belong to Gy (o) for almost all n € N. Therefore G, (o) has infinitely
p-divisible elements. [

Theorem 13. Let £L(G,X) be a graph of strong cohesion with the vertex
group Gy of level zero a finite abelian p-group. For the fundamental group
G = m(G, X) the following propositions are equivalent.

(i) The exponents of the vertex groups Gy, v(i) € V(X) are bounded.
(i) The realization € : G — R has finite image Ge.
(iii) The group G is RF,.

)

(iv) The group G does not have infinitely p-divisible elements.

Proof. (i) = (ii) It is easy to see that the image Ge is finite, since the graph
is of strong cohesion and the exponents of G,;), v(¢) € V(X) are bounded.

(ii) = (iii) The group G is a free by finite p-group, since Ker € is a
free group.

(i) = (iv) Lemma 1.

(iv) = (i) Suppose that the exponents of G,;), v(i) € V(X) are not
bounded. Then there is a sequence of z, € Gy in the vertex groups
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with unbounded orders. Because of the strong cohesion of £(G, X) there is
m, € N such that 1 # 2P " € Gy(0)- The group G,(g) is finite so there are
infinitely many of 22" " which coincide on a common element zy € Gy(0)-
Therefore x¢ = x’,’bmn , a contradiction, since the orders of z,, are unbounded
and G has not infinitely p-divisible elements. [J

Corollary 13.1. If the tree X is finite, then the fundamental group G =
(G, X) is RF,.

Corollary 13.2. Let £(G, X) be a graph of finite abelain p-groups over the
finite tree X. Without the assumption that L£(G,X) is of strong cohesion,
the fundamental group G = 7(G, X) is RF,.

Proof. Because of the construction of the realization, since X is finite, we
have that G = n(G, X) is a free by finite p-group. O

4. The residual p-finiteness of the fundamental group of a tree of
free abelian groups.

Let £(G, X ) be a graph of groups with vertex groups finitely generated
free abelian groups over the tree X. Suppose that there is a vertex group
Gv(O) such that T’(Gv(i)) < T(Gv(o)) =k, v(1) € V(X) where T(Gv(i)) is
the (free) rank of G,;y. Let R = Q x --- x Q be the direct product of &
copies of (Q, +). Then the natural embedding of G, (o) in R, € : G0y —
R can be extended to a homomorphism ¢ : G = 7(G,X) — R, by the
definition of the fundamental group G = 7(G, X). It is easy to see that
Ker eNG,u) =1, v(i) € V(X). So we have a realization of the fundamental
group G = (G, X).

In a similar way with definition preceding Lemma 12 we can define a
graph of groups of strong cohesion in the case where the vertex groups are
free abelian groups of finite rank. Simply we replace the statements (iv)
and 9v) there by:

(iv’) All the vertex groups, except (possibly) the vertex group G, g
of level zero, are finitely generated free abelian groups.

(v') If Gy(iy, Gy(i41) are two vertex groups of levels ¢ and ¢ + 1 linked
by the edge groups H,(oy = Hy(),(t(e) = v(i), 7(e) = v(i + 1)), then
7(Hree)) = 7(Gy(ig1))- Namely H. () is of finite index in G (;41)-

Proposition 14. Let £(G,X) be a graph of groups over the connected
graph X with vertez groups G,,, v € V(X), finitely generated abelian groups.
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Suppose that the fundamental group G = 7(G,X) is RN. If G,, G, are
two neighbouring vertex groups joined by the edge e (u(e) = v,7(e) = u),
then ‘FL(E) :HL(E)‘ = ¢"(®) and |FT(6) :HT(E)‘ = ¢*®), for a prime q and
v(e), v(e) > 0, where FL(e) (resp. FT(e)) is the direct factor of G,(G,) such
that Hb(e) S HL(C) (H.r(e) S HT(Q)) and T(Hb(e)) = T‘(HL(e)) (T(FL(E)) =
7(H:(e))). Moreover if G if RFp, then ¢ = p and ‘Fb(e) tHyey| = p(©) for
every e € F(X).

Proof. Let G,, G, be two neighboring vertex groups. Without loss of gen-
erality we can suppose that there is a z € FL(C) \ H,()- If there are two
different primes p,q such that p | ‘FL(C) :HL(C)| and q | |FT(6) :HT(6)|,
then we can choose z € fIL(i) and y € FT(e) such that z? € H,() and
y? € H,(.) and since z € H,() we have [z,y] # 1 and [z,y]? = [2P,y] = 1
mod v3(G), [z,y]? = [z,y?] = 1 mod v3(G), whence 1 # [z,y] € v3(G).
Similarly [z,y] € Yu(G) for every n € N. If y € Gy, then [z,y|N =
[N,yN] = [aN,yN}, where a € H. Hence [z,y|N = [a,y]N = N. There-
fore [¢,y] € N for every NG with |G : N| = p*, a contradiction, since G is
RN.sop=q.

If G is RF, and there is a prime g such that g | ‘FL(E) : Hy(¢)|, then
for a z € G, such that z? € H,(, we have that x € N{H,)N | N <
G such that |G : N| = p*}, a contradiction, since G is RF, and as we
point out above, we can find z € G, such that [z,y] #1. O

Let £(G,X) be a graph of groups of strong cohesion over the tree
X. Suppose that the vertex group Gy of level zero is a finitely generated
free abelian group. Let (e, Ge) be the realization of the fundamental group
7(G,S) in R (R = Q x --- x Q, k copies of Q, k = r(Gp)). Let p be a
prime and f, = €0y, n € N, where ¢, : Ge — Ge/(Ge)”" is the natural
epimorphism. If K,, = Ker f, n € N, then every element gK, € G/K,
is of bounded order, since (g?" ) f, = (g7 )e 0 @ = (ge)?P" (Ge)P" = (Ge)P".
Therefore each coset group G,y K, /K, is finite.

Proposition 14 gives a necessary condition for the RF, of the funda-
mental group of a graph of groups with vertex groups f.g. abelian groups.
Now we give a sufficient condition.

Proposition 15. Let £(G, X) be a graph of groups of strong cohesion over
the tree X with the vertex group Gy of level zero a f.g. free abelian group.
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Moreover we suppose that for every e € E(X) there exists a prime p and
v(e) > 0 such that ]FL(E)] c Hyey |= p(®). Then the following statements
are equivalent.
(i) N,GP" Ker e= Ker e
(i) N (G N Kn) =1, v(i) € V(X).
(iii) The realization Ge has no elements of infinite p-height.

Proof. (i) = (ii) By definition above K,, = Ker fn, so K, = G?" Ker «.
But N,G?" Ker e = Ker € and G,;y N Ker e = 1,v(i) € V(X), whence
Nn(Guy N Ky) =1, v(i) € V(X). ‘

(ii) = (iii) Let ge € Ge be an element of infinite p-height. If g =
xy - Ty, T; € Gy(y), then ge = (yn€)P" for infinitely many n € N. Since
z; € Gy(;), the graph is of strong cohesion and Gée is abelian, there exists
A(g) = X € N such that :z:j’-"A € Gy for j = 1,... ,k. Therefore (gpx)e =

A
(=7

(h = mix) such that he has infinite p-height. So he € Qn(Ge)P", namely
h € N, K, which implies h € N, (Go N K,) = 1. So zf '--xf =1 and
(yn€)PT* = 1, but Ge is torsion free, whence y,e = 1 and ge = 1. Therefore
the group Ge has not elements of infinite p-height. So N, (Ge)P" = 1.

(iii) = (i) Since N,(Ge)?" =1, we have 1 = N, (Ge)P" = N, (GP" )e =
Nn(GP" Ker €)e D (N,G?" Ker ¢)e. Therefore N, GP" Ker e C Kere. 0

A n .
czh e = (yne)? " and we can suppose that there is a h € Gy

Corollary 15.1. Suppose that one of the (i) - (iii) of the Proposition 15
is valid, then the fundamental group G = 7(G,X) is RF,.

Proof. For every n € N we can define a new graph of groups, say £(G,,, X),
over the same underlying tree X, where to each vertex v(i) € V(X) we as-
sign the group G, ;) K, /Ky, and to each edge e € E(X) with «(e) = v(i) we
assign the “induced” subgroups H,(o)Kpn/Kn = Hy(oyKn /Ky I r(H () =
7(Gy(i)), where 7(e) = v(i), (the graph £(G, X) is of strong cohesion),
then there exists a sufficiently large n € N such that rp(Hpe)Kn/K,) =
7p(Gy(i)Kn/Ky). So the graph £(G,, X) is of strong cohesion. Therefore
the fundamental group G, = 7(G,,X) is RF, from Theorem 13. The
epimorphism 6; : Gy — Gu@yKn/Kn, v(i) € V(X), evidently, can be
extended to a common homomorphism 6 : G = (G, X) — G,, = 7(G,, X).
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Since Ny (G, N Kn) = 1, v(i) € V(X), we have that for g € G, g # 1,
there exists n € N such that g8 # 1, and finally G is RF,. O

Corollary 15.2. Let £(G, X) be a graph of finitely generated free abelian
groups over the finite tree X. without the assumption that £L(G,X) is of
strong cohesion, the fundamental group G = n(G, X) is RF, if and only if
|T{—i(e) : Hi(e)| = p¥(®) for every e € E(X).

Proof. Tt is clear that the realization Ge of G is finitely generated, since X
is finite. So the result follows from the Proposition 14 and the proof of the
Proposition 15. O
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