Volume 22, No. 2, 1996

THE RESIDUAL NILPOTENCE OF THE FUNDAMENTAL GROUP OF CERTAIN GRAPHS OF GROUPS

D. VARSOS Communicated by the editors.

1. Introduction.

The residual nilpotence of a free product $G = \star_{i \in I} G_i$ is studied in [6]. There Malc'ev gives (separate) necessary and sufficient conditions, which, in general, do not constitute a characterization. A characterization for the residual nilpotence of a free product has been given by Lichtman (Th. 1 of [5]). On the other hand Raptis and Varsos in [8] give a characterization for the residual nilpotence of HHN-extensions with base group a finite or a finitely generated (f,g,) abelian group.

Here we study the residual nilpotence (via the residual finiteness-p) of the fundamental group of a graph of groups. First we deal with the case where the vertex groups are finite (Th. 6), where we reduce the general case to the case of finite p-groups. If the graph is finite we give a characterization (Prop. 7), which in the case where the vertex groups are finite abelian p-groups is given by an internal condition on the edge groups (Prop. 11). Second, we study the case where the vertex groups are f.g. abelian groups and give a necessary condition (Prop. 14). Finally we study the case of a specific kind of tree products and give a characterization if the vertex groups are finite abelian p-groups (Th. 13) and a sufficient condition if the vertex groups are f.g. generated free abelian groups (Cor. 15.1).

These results extend the results of [4] and [8].

2. Definitions and preliminary results.

Definition. A group G has the property \mathcal{X} residually if to every element $g \in G$, $g \neq 1$, there exists a normal subgroup N of G such that $g \notin N$ and

G/N has the property \mathcal{X} . We also say that G is residually \mathcal{X} abbreviated to $(\mathcal{R}\mathcal{X})$.

It is clear that a group G is \mathcal{RX} if and only if the normal subgroups whose factor groups have property \mathcal{X} intersect in the trivial group. It follows that a group G is residually nilpotent (\mathcal{RN}) if and only if $\cap_n \gamma_n(G) = 1$, where $\gamma_n(G), n \in \mathbb{N}$, is the n^{th} term of the lower central series of G.

If a group G is residually finite-p (\mathcal{RF}_p) , p-prime, then it is \mathcal{RN} . But a \mathcal{RN} group is not necessarily a \mathcal{RF}_p group. In the class of finitely generated groups residual nilpotence and residual p-finiteness coincide for certain primes p described in [3] (Th 2.1 (ii)).

A graph of groups $\mathcal{L}(\mathcal{G},X)$ is a connected graph X, where to each vertex $v \in V(X)$ is assigned a (vertex) group G_v and each edge $e \in E(X)$, with initial and terminal vertices $\iota(e)$ and $\tau(e)$ respectively, is assigned two isomorphic (edge) subgroups $H_{\iota(e)} \leq G_{\iota(e)}, H_{\tau(e)} \leq G_{\tau(e)}$ via an isomorphism $\theta_e: H_{\iota(e)} \to H_{\tau(e)}$ ($\theta_e^{-1} = \theta_{\overline{e}}$, where \overline{e} is the inverse of e with $\iota(\overline{e}) = \tau(e), \ \tau(\overline{e}) = \iota(e)$). The definition of the fundamental group $G = \pi(\mathcal{G}, X)$ of a graph of groups $\mathcal{L}(\mathcal{G}, X)$, relative to a maximal tree T of X, is given in [10] (§1.5), where it is also proved that the structure of G is independent of the choice of the maximal tree T.

There may exist edges $e \in E(X)$ for which the assigned edge groups are trivial $(H_{\iota(e)} = H_{\tau(e)} = 1)$. We consider two sets of edges with trivial edge groups:

- (i) Let EC(X) be a maximal set of edges e of X such that $H_{\iota(e)} = H_{\tau(e)} = 1$ and $\overline{X} = X \setminus EC(X)$ is connected. It may be that $EC(X) = \emptyset$. The fundamental group of $\mathcal{L}(\mathcal{G}, X)$ has the structure $\pi(\mathcal{G}, X) = F \star \pi(\mathcal{G}, \overline{X})$, where F is a free group with (free) generators the (free) generators of $\pi(\mathcal{G}, X)$ which correspond to the edges of EC(X).
- (ii) Let ET(X) be the set of edges e of X such that $H_{\iota(e)} = H_{\tau(e)} = 1$, e is not in EC(X) and e disconnects \overline{X} . It may be that $ET(X) = \emptyset$. If $e \in ET(X)$, then $\overline{X} = X_{\iota(e)} \cup \{e\} \cup X_{\iota(e)}$, where $X_{\iota(e)}$ and $X_{\tau(e)}$ are connected components of \overline{X} joined by e, and the fundamental group has the structure $\pi(\mathcal{G}, \overline{X}) = \pi(\mathcal{G}, X_{\iota(e)}) \star \pi(\mathcal{G}, X_{\iota(e)})$.

Therefore according to the discussion above the fundamental group has the structure $\pi(\mathcal{G}, X) = F \star (\star \pi(\mathcal{G}, X_i))$ where F is a free group with rank |EC(X)| and $\star \pi(\mathcal{G}, X_i)$ is a free product with |ET(X)| + 1 factors and

in each factor $\pi(\mathcal{G}, X_i)$ none of the edge group is the trivial group. Since for a free product of groups there exists a characterization of the residual nilpotence (Th. 2.1 of [5]), in the following we suppose, without any further mention, that the edge groups are not trivial. We can also suppose that each edge group is a proper subgroup of the corresponding vertex group, unless we have a loop $(\iota(e) = \tau(e))$, where it may happen $H_{\iota(e)} = G_{\iota(e)}$. In the case where the graph is a loop and the vertex group is a finitely generated abelian group we have a characterization (Th. 2.4 of [7]).

Let $\mathcal{L}(\mathcal{G}, C)$ be a graph of groups, over the circuit C with vertices v_1, \ldots, v_n and edges e_1, \ldots, e_n , where $\iota(e_{i+1}) = \tau(e_i) = v_{\iota+1}, \ i = 1, \ldots, v_n$ n-1 and $\iota(e_1)=\tau(e_n)=v_1$. Let $G_{\iota(e_i)}$ be the vertex groups and $H_{\iota(e_i)}\theta_{e_i}=H_{\tau(e_i)}$ the corresponding edge groups for $i=1,\ldots,n$ (cf [10] p. 15). In the fundamental group $G = \pi(\mathcal{G}, C)$ we have the relations $H_{\iota(e_i)} = H_{\iota(e_i)} = \theta_{ei} = H_{\tau(e_i)}, i = 1, \dots, j-1, j+1, \dots, n \text{ and } t^{-1}H_{\iota(e_i)}t = 0$ $H_{\iota(e_i)}\theta_{e_i}=H_{\tau(e_i)}$. The generator t of $\pi(\mathcal{G},C)$ corresponds to the edge $e_j \in E(X)$, which is omitted to obtain a maximal tree. Let $\theta_i = \theta_{e_i}$ $\theta_{e_{i+1}} \circ \cdots \circ \tau_t \circ \cdots \circ \theta_{e_{i-1}}$, where in the composition each θ_{e_r} acts as the restriction of the initial θ_{e_r} on a subgroup of $H_{\iota(e_r)}$ and τ_t is the inner automorphism induced by t. For i = 1, ..., n let $\mathcal{N}_i = \{K \leq G_{\iota(e_i)} \text{ such }$ that $(K)\theta_i = K$. For $K, L \in \mathcal{N}_i$, it is easy to see that the subgroup M = $\langle K, L \rangle$ belongs to N_i . So the set $H_i = \bigcup \{K \in N_i\}$ is a subgroup of $G_{\iota(e_i)}$ with the property; $(H_i)\theta_i = H_i$ and if $N \leq G_{\iota(e_i)}$ with $(N)\theta_i = N$, then $N \leq H_i$. In this sense the subgroup H_i is the "largest" subgroup of $G_{\iota(e_i)}$ with this property. From the way the subgroups H_i are defined and from the relations of the fundamental group $\pi(\mathcal{G}, C)$, it is easy to see that $H_i = H_r$ for every $i, r \in \{1, \dots, n\}$. The homomorphisms θ_i are automorphisms of $H = H_i$. Moreover, we have $H\theta_i = H_i\theta_i = H_i\theta_{e_i} \circ \theta_{i+1} \circ \theta_{e_i}^{-1}$. The subgroup H is called the *core* of the circuit C.

Remark. If the graph Y is a part of a larger graph of groups $\mathcal{L}(\mathcal{G}, X)$, then $\mathcal{L}(\mathcal{G}, Y)$ is a subgraph of groups of $\mathcal{L}(\mathcal{G}, X)$ and the fundamental group $\pi(\mathcal{G}, Y)$ of $\mathcal{L}(\mathcal{G}, Y)$ is embeddable in the fundamental group $\pi(\mathcal{G}, X)$ of $\mathcal{L}(\mathcal{G}, X)$ (cf. [2] §2).

If $\mathcal{L}(\mathcal{G}, X)$ is a graph of groups and T is a maximal tree of X, chosen to obtain a presentation of the fundamental group $G = \pi(\mathcal{G}, X)$, then there is an 1-1 and onto correspondence between the edges of X omitted to obtain

the maximal tree T and the (free) generators of G. Let $G_T = \pi(\mathcal{G}, T)$ be the fundamental group over T with vertex groups $G_{v(i)}$, $v(i) \in V(X) = V(T)$ and edge groups $H_{\iota(e)}\theta_e = H_{\tau(e)}$, $e \in E(T)$. By contracting the maximal tree T to a point (cf. [10] or [2] §2), the resulting graph of groups is a bouquet of cycles, where to its single vertex is assigned the group G_T and to its loops are assigned the (isomorphic) subgroups $(H_{\iota(e_j)})\theta_{e_j} = H_{\tau(e_j)}$, where $e_j \in E(X) \setminus E(T)$. So the fundamental group $G = \pi(\mathcal{G}, X)$ has the presentation $G = \pi(\mathcal{G}, X) = \langle t_j, G_T \mid t_j^{-1}H_{\iota(e_j)}t_j = H_{\tau(e_j)}$, $e_j \in E(X) \setminus E(T)\rangle$ of an HNN-extension. The core H_j of each loop in the presentation of G as an HNN-extension is the core of an original circuit C_j in X with $e_j \in E(C_j)$.

Lemma 1. Let G be a group. Suppose that for some $g \in G$, $g \neq 1$, the equation $x^{p^n} = g$, p-prime, has solutions for infinitely many $n \in \mathbb{Z}^+$. Then the group G is not \mathcal{RF}_p .

Proof. Let N be a normal subgroup of G such that $g \notin N$ and $|G/N| = p^m$. For n > m there exists $x \in G$ with $x^{p^n} = g$, which implies $g \in N$. So G is not \mathcal{RF}_p . \square

A simple example of a group which is abelian but not \mathcal{RF}_p , is the quasicyclic p-group $C_p \infty = \langle a_1, a_2, \dots \mid a_1^p = 1, a_{i+1}^p = a_i \rangle$.

As a Corollary of Proposition 2 of [8] we have:

Proposition 2. The semi-direct product G = K k H of a finite p-group K by a \mathcal{RF}_p group H is \mathcal{RF}_p if and only if it is \mathcal{RN} .

Proof. Suppose that G is \mathcal{RN} . Let $\pi: H \to \operatorname{Aut} K$ be the induced homomorphism via the semi-direct product G = K]H. Let $h \in H$ be such that $h\pi \in \operatorname{Aut} K$ has order $o(h\pi) = p^{\xi} \cdot q$, $q \neq 1, (p,q) = 1$. Then for every $k \in K$ we have $(k)h\pi = h^{-1}kh$, but there exist $k \in K$ such that $h^{-p^{\xi}}kh^{p^{\xi}} \neq k$. So $[k,h^{p^{\xi}}] \neq 1$ with $[k,h^{p^{\xi}}]^q \equiv [k,h^{p^{\xi}q}] \mod \gamma_3(G)$ and $[k,h^{p^{\xi}}]^{o(k)} \equiv [k^{o(k)},h^{p^{\xi q}}] \mod \gamma_3(G)$. Therefore $[k,h^{p^{\xi}}] \in \gamma_3(G)$. Similarly $[k,h^{p^{\xi}}] \in \gamma_n(G)$ for every $n \in \mathbb{N}$, a contradiction. So every element of $H\pi$ has an order of power p and the result follows by Proposition 2 of [8]. \square

The following proposition is a generalization of Lemma 3 of [8]. The proof is similar and it is omitted.

Proposition 3. Let $\mathcal{L}(\mathcal{G}, X)$ be a graph of groups over the connected finite graph X with vertex groups G_v , $v \in V(X)$ finite p-groups. The fundamental group $g = \pi(\mathcal{G}, X)$ is \mathcal{RF}_p if and only if it is \mathcal{RN} .

Corollary 3.1. Let $\mathcal{L}(\mathcal{G}, X)$ be a graph of groups as in Proposition 3 and C be a circuit in the graph X. Suppose that the fundamental group $\pi(\mathcal{G}, X)$ is \mathcal{RN} , then the automorphism θ_i of the core H of C defined above has order a power of p.

Proof. It is immediate from Propositions above and Proposition 2 of [8]. \Box

Lemma 4. Let $\mathcal{L}(\mathcal{G}, X)$ be a graph of groups over the graph X with vertex groups G_v , $v \in V(X)$. Suppose that the equation $x^n = g$, for a $g \in \pi(\mathcal{G}, X)$, has solutions for infinitely many $n \in \mathbb{Z}^+$. Then g belongs to a conjugate of a vertex group. So every solution x_n of $x^n = g$ belongs to a conjugate of a vertex group.

Proof. Without any loss of generality we can suppose that g is cyclically reduced with reduced length $l(g) \geq 2$. (For the definition of the length of g see [2] §1.11). Then for infinitely many $n \in \mathbb{Z}^+$ we have $g = r_n^{-1} x_n^n r_n$, with $r_n, x_n \in G$ and x_n cyclically reduced. If $l(x_n) > 1$, then we have $x_n^n = r_n g r_n^{-1}$ with x_n^n cyclically reduced and $l(x_n^n) = n \cdot l(x_n)$. Thus the cyclically reduced length of g is arbitrarily large, a contradiction. Whence $l(x_n) = 1$, which implies that x_n and g belong to a conjugate of a vertex group. \square

3. The residual p-finiteness of the fundamental group of a graph of finite groups.

Proposition 5. Let $\mathcal{L}(\mathcal{G}, X)$ be a graph of groups over the connected graph X with finite vertex groups G_v , $v \in V(X)$. Suppose that the fundamental group $G = \pi(\mathcal{G}, X)$ is \mathcal{RN} . Then we have:

- (i) The vertex groups G_v , $v \in V(X)$ are nilpotent groups.
- (ii) There exists a prime p such that $|G_v: H_{\iota(e)}| = p^{r(e)}$, $(v = \iota(e))$, for all $v \in V(X)$, $e \in E(X)$.
- (iii) There exist p_1, \ldots, p_k primes such that for each $v \in V(X)$ $G_v = \prod_{s=1}^k S_{p_s}(G_v)$, where $S_{p_s}(G_v)$ is the p_s -Sylow subgroup of G_v .

Proof. (i) Since the group G is \mathcal{RN} and the vertex groups finite, they must be nilpotent.

- (ii) Let $H_{\iota(e)}$ be an edge group which is proper subgroup of the vertex group G_v , $(v=\iota(e))$. So $H_{\iota(e)}\cap S_p(G_v)$ is a proper subgroup of $S_p(G_v)$ for a prime p. Suppose that for another vertex group G_u there exists another prime q such that the edge group $H_{\iota(e')}$, $(u=\iota(e'))$, is proper and $H_{\iota(e')}\cap S_q(G_u)$ is a proper subgroup of $S_q(G_u)$. Let $a\in S_p(G_v)\setminus (H_{\iota(e)}\cap S_p(G_v))$, $a\neq 1$ and $b\in S_q(G_u)\setminus (H_{\iota(e')}\cap S_q(G_u))\cap b\neq 1$. Then $[a,b]\neq 1$ and $[a,b]^{o(\alpha)}\equiv [a^{o(\alpha)},b]\mod \gamma_3(G)$, $[a,b]^{o(b)}\equiv [a,b^{o(b)}]\mod \gamma_3(G)$. So $[a,b]\in \gamma_3(G)$, because (o(a),o(b))=1. Similarly, $[a,b]\in \gamma_n(G)$ for every $n\in \mathbb{N}$, a contradiction, since G is \mathcal{RN} . So $H_{\iota(e)}\cap S_p(G_v)$ is a proper subgroup of $S_p(G_v)$ for the same prime p for all $v\in V(X)$ and $e\in E(X)$, $(\iota(e)=v)$.
- (iii) Since $|G_v: H_{\iota(e)}| = p^{r(e)}$ for all $v \in V(X)$, $e \in E(X)$, $\iota(e) = v$, we have $H_{\iota(e)} = A_{\iota(e)} \times K_{\iota(e)}$, where $A_{\iota(e)} \leq S_p(G_v)$ and $K_{\iota(e)} = S_{p_2}(G_v) \times \cdots \times S_{p_k}(G_v)$ (if $p = p_1$). But $(H_{\iota(e)})\theta_e = H_{\tau(e)}$, so $H_{\tau(e)} = A_{\tau(e)} \times K_{\tau(e)}$ with $K_{\tau(e)} = S_{p_2}(G_u) \times \cdots \times S_{p_k}(G_u)$, T(e) = u and $S_{p_s}(G_v) \simeq S_{p_s}(G_u)$, $s = 2, \ldots, k$. Finally, since X is connected, $G_v = \prod_{s=1}^k S_{p_s}(G_v)$ for each $v \in V(X)$ with the same primes p_1, \ldots, p_k . \square

The proof above contains implicitly the proof of the:

Corollary 5.1. With the assumptions of Proposition 5, for $e \in E(X)$ the subgroups $K_{\iota(e)}$ are normal in G.

Proof. Let G_v be a vertex group. Then from the proposition above we have that $K_{\iota(e)} = K_{\iota(e')}$ for every $e, e' \in E(X)$ with $\iota(e) = \iota(e') = v$, let $K_v = K_{\iota(e)}$. So $(K_v)\theta_e = K_u$, where u = T(e), for each $e \in E(X)$. Let T be a maximal tree of X, from the defining relations in G we have $K_v = (K_v)\theta_e = K_u$ for each $e \in E(T)$ with $\iota(e) = v$, $\tau(e) = u$, and $t_\iota^{-1}K_rt_e = K_s$, where t_e is the generator corresponding to the edge $e \in E(X) \setminus E(T)$ with $\iota(e) = r$, $\tau(e) = s$. But the graph is connected, so we have $K_v = K_u$ for every $v, u \in V(X)$ and finally $g^{-1}K_vg = K_v$ for $g \in G$, since each K_v is normal in the vertex group G_v . \square

It is easy to see that the normal subgroup $K = K_v$, for every $v \in V(X)$, belongs to the core of every circuit C of the graph X.

If we preserve the same underlying graph X and assign to each vertex $v \in V(X)$ the p_s -Sylow subgroup of G_v , say $S_{p_s}(G_v)$ we have for every $s = 1, \ldots, k$ a graph of groups $\mathcal{L}(\mathcal{G}_{p_s}, X)$ with edge subgroups $S_{p_s}(G_v) \cap$

 $H_{\iota(e)} \simeq S_{p_s}(G_u) \cap H_{\tau(e)}$ for the edge $e \in E(X)$ with $\iota(e) = v, \ \tau(e) = u$. The fundamental groups $G_{p_s} = \pi(\mathcal{G}_{p_s}, X)$ for $s = 1, \ldots, k$ are subgroups of $G = \pi(\mathcal{G}, X)$. From previous Corollary we have that each $G_{p_s}, \ s = 2, \ldots, k$, is the semi-direct product of $S_{p_s}(G_v)$ by a free group $F = \langle t_m, m \in \Lambda \rangle$ of rank $r(F) = |E(X) \setminus E(T)|$, where T is a maximal tree of X. Since it is supposed that the fundamental group G is \mathcal{RN} , from Proposition 2 each G_{p_s} is \mathcal{RF}_{p_s} for $s = 2, \ldots, k$.

We can now state the converse of the Proposition 5.

Theorem 6. The fundamental group $G = \pi(\mathcal{G}, X)$ of the graph of groups $\mathcal{L}(\mathcal{G}, X)$, where X is connected and the vertex groups G_v are finite, is \mathcal{RN} if, and only, if we have:

- (i) The vertex groups G_v , $v \in V(X)$ are nilpotent groups.
- (ii) There exists a prime p such that $|G_v: H_{\iota(e)}| = p^{r(e)}$, $(v = \iota(e))$, for all $v \in V(X)$, $e \in E(X)$.
- (iii) There exist p_1, \ldots, p_k primes such that for each $v \in V(X)$ $G_v = \prod_{s=1}^k S_{p_s}(G_v)$, where $S_{p_s}(G_v)$ is the p_s -Sylow subgroup of G_v .
- (iv) The group $G_{p_1} = \pi(G_{p_1}, X)$ is \mathcal{RN} , where $p = p_1$.
- (v) For every circuit C of X with core H_c we have: The automorphism θ_i , defined above, has order divided only by the primes, which appear in the orders of the vertex groups of C.

Proof. If the fundamental group $G = \pi(\mathcal{G}, X)$ is \mathcal{RN} , then (i)-(iii) follow from Proposition 5 and (iv) follows from the fact that the group $G_{p_1} = \pi(G_{p_1}, X)$ is a subgroup of $G = \pi(\mathcal{G}, X)$. Let C be a circuit of X with vertex groups G_1, \ldots, G_n and core H_c . For each $s = 1, \ldots, k$ let C_{p_s} be the (sub)circuit of C with vertex groups $S_{p_s}(G_i)$ $i = 1, \ldots, n$. The fundamental group of each C_{p_s} for $s = 1, \ldots, k$ is a subgroup of $\pi(\mathcal{G}, X)$, so it is \mathcal{RF}_{p_s} by Proposition 3. It is easy to see that the core H_c of C is the direct product of the cores H_{p_s} of C_{p_s} $s = 1, \ldots, k$ and (v) follows from Corollary 3.1.

Conversely, the normal subgroup $K = \prod_{s=2}^k S_{p_s}(G_v)$ (Corollary 5.1) has the property $G/K \simeq G_{p_1}$, therefore $\cap_n \gamma_n(G) \leq K$, Since G_{p_i} is \mathcal{RN} . If $N = \langle S_{p_1}(G_v), v \in V(X) \rangle^G$, then $G/N \simeq K]F$, where F is the free group $F = \langle t_m, m \in \Lambda \rangle$ defined above. From (v) and Proposition 2 (cf. the converse in the proof of Th. 4 of [8]) we have that K]F if \mathcal{RN} , so $\bigcap_n \gamma_n(G) \leq N$ and finally $\bigcap_n \gamma_n(G) \leq K \cap N = 1$. \square

The previous Theorem reduces the problem of the residual nilpotence of the fundamental group of a graph of finite groups to the problem of the residual nilpotence of the fundamental group of a graph of finite p-groups.

In the case where the graph is a segment or a loop there is a characterization of the fundamental groups (Theorem of [4] and Th. 13 of [8]). In the general case of a finite graph of finite p-groups the residual nilpotence and the residual p-finiteness coincide (Prop. 3) and we have an analogous proposition of the Proposition 1 of [8]. The proof is similar and it is omitted.

Proposition 7. Let $\mathcal{L}(\mathcal{G},X)$ be a graph of groups over the connected finite graph X with vertex groups G_v , $v \in V(X)$, finite p-groups. The fundamental group $G = \pi(\mathcal{G},X)$ is \mathcal{RF}_p if and only if there exists a finite p-group Y, such that the vertex groups G_v are subgroups of Y and for each generator t_e of G there is a $g_e \in Y$ such that $\tau_{g_e|H_{\iota(e)}} = \theta_e$, where $H_{\tau(e)} = H_{\iota(e)}\theta_e = t_e^{-1}H_{\iota(e)}t_e$, $e \in E(X) \setminus E(T)$, where T is a maximal tree of X. \square

A necessary condition for the \mathcal{RF}_p of the fundamental group $G = \pi(\mathcal{G}, X)$, which depends upon an internal condition on the edge groups, is given by Corollary 3.1. In the case, where the vertex groups are finite abelian p-groups, we can give a sufficient condition, which depends on the isomormorphisms associating the edge groups.

Before stating this condition we shall give the following necessary background.

As it is known every finite abelian p-group K has a decomposition $K = C_1 \times C_2 \times \cdots \times C_n$ as a direct product of cyclic subgroups with $|C_i| = p^{m_i}$ and $m_1 \geq m_2 \geq \cdots \geq m_n$. The number n depends upon the group G and it is the p-rank of $K(r_p(K) = n)$.

Lemma 8. Let K be a finite abelian p-group and $H \leq K$ with $r_p(K) = r_p(H) = r$. If $\varphi \in Aut(H)$, then there exists a finite abelian p-group X with $r_p(X) = r$ and $\overline{\varphi} \in Aut(X)$ such that $K \leq X, \overline{\varphi}_{|H} = \varphi$ and $o(\overline{\varphi}) = o(\varphi)$.

Proof. This comes from the proof of Proposition 3 of [1] by taking A = B = H where it is easy to see that $o(\overline{\varphi}) = o(\varphi)$. \square

Lemma 9. Let K be a finite abelian p-group, $A, B \leq K$ and $\varphi : A \rightarrow B$ an isomorphism. Then we can find a finite abelian p-group X and an

automorphism θ of X such that $K \leq X, o(\theta) = p^{\epsilon}$ for some $\epsilon \in \mathbb{N}$ and $\theta_{|A} = \varphi$, if and only if $o(\varphi_{|H}) = p^{v}$ for some $v \in \mathbb{N}$, where H is the "largest" subgroup of K such that $H\varphi = H$.

Proof. If H=1, then we have Lemma 6 in [8]. Suppose that $H\neq 1$ and the order of $\varphi_{|H}$ is not a power of p, then it is clear that there is no group X such that $K\leq X$ and $\theta\in \operatorname{Aut}X$ with $o(\theta)=p^{\epsilon}$ and $\theta_{|H}=\varphi$. So we may assume that the order of $\varphi_{|H}$ must be a power of p. Let $\{k_1,\ldots,k_r\}$ be a set of generators of K such that $H=\langle k_i^{p^{m_1}},\ldots,k_s^{p^{m_s}}\rangle$, $s\leq r$ and $L=\langle k_1,\ldots,k_r\rangle$. Namely L is a minimal direct factor of K such that $H\leq L(r_p(L)=r_p(H))$. The isomorphism φ induces an isomorphism $\overline{\varphi}:A/H\to B/H$, since the "largest" subgroup of K/H with the property $(M/H)\overline{\varphi}=M/H$ is the trivial group, the groups K/H, A/H, B/H and the isomorphism $\overline{\varphi}$ satisfy the assumptions of Lemma 6 in [8]. So there exists a finite abelian p-group Y such that $K/H\leq Y$ and $\theta_1\in \operatorname{Aut}(Y)$ with $o(\theta_1)=p^{\epsilon_1}$ and $\theta_{1|A/H}=\overline{\varphi}$. The groups L, H and the isomorphism φ satisfy the assumptions of the previous Lemma. So there exists a finite abelian p-group W such that $L\leq W$ and $\theta_2\in \operatorname{Aut}(W)$ with $o(\theta_2)=p^{\epsilon_2}$ and $\theta_{2|H}=\varphi$.

Let $K = N \times L$, for every element $k \in K$ there exist unique $x \in N, y \in L$ such that $k = x \cdot y$. Since $H \leq L$, it is easy to see that the map $f : K \to K/H \times L$ with kf = (kH, y) defines a monomorphism. So X can be chosen to be the direct product $X = Y \times W$ and θ be the automorphism $\theta = (\theta_1, \theta_2)$ which satisfy the requirements of the statements. \square

Remark 1. The hypotheses in the Lemma above are the same as in Proposition 7 in [8], but the result is sharper, since the group K is embedded in a finite abelian p-group X.

Remark 2. It follows from the proofs of the Proposition 3 in [1] and Lemma 6 in [8] that the group X has a decomposition as a direct product of cyclic subgroups of the same order, say p^r , which is equal to the maximal order of the elements of the group K.

Proposition 10. Let K be a finite abelian p-group, $A_1, B_1, A_2, B_2 \leq K$ and $\varphi_1: A_1 \to B_1, \varphi_2: A_2 \to B_2$ isomorphisms. Then there exists a finite abelian p-group V with $K \leq V$, $\theta_1, \theta_2 \in Aut(V)$ with $o(\theta_1) = p^{\epsilon_1}, o(\theta_2) = p^{\epsilon_2}$ and $\theta_{1|A_1} = \varphi_1, \theta_{2|A_2} = \varphi_2$ if and only if there exist $v_1, v_2 \geq 0$ such that

 $o(\varphi_{1|H_1})=p^{v_i}, o(\varphi_{2|H_2})=p^{v_2}, where H_1, H_2 are the "largest" subgroups of K such that <math>H_1\varphi_1=H_1, H_2\varphi_2=H_2$.

Proof. The previous Lemma ensures the existence of a finite abelian p-group X and an automorphism $\theta_1 \in \operatorname{Aut}(X)$ such that $K \leq X$, $\theta_{1|A_1} = \varphi_1$ and $o(\theta_1) = p^{\epsilon_1}$ if and only if $o(\varphi_{1|H_1}) = p^{v_1}$. Again, by Lemma 9, we can embed the group X into a finite abelian p-group, say V, such that there exists an automorphism $\theta_2 \in \operatorname{Aut}(V)$ with $\theta_{2|A_2} = \varphi_2$, $o(\theta_2) = p^{\epsilon_2}$ if and only if $o(\varphi_{2|H_2}) = p^{v_2}$. From the remark 2 above the elements of maximal order of the group V have the same order p^r . So $V = X \times N$, whence the automorphism θ_1 of X can be extended easily to an automorphism $\overline{\theta}_1 \in \operatorname{Aut}(V)$ with the required properties and we have finished. \square

Let $\mathcal{L}(\mathcal{G}, X)$ be a graph of groups over the tree X, with vertex groups $G_v,\ v\in V(X)$, finite abelian p-groups of bounded p-rank. Let $G_{v(0)}$ be a vertex group of maximal p-rank $(k = r_p(G_{v(0)}) \ge r_p(G_{v(i)}), \ v(i) \in v(x)).$ Let $R = C_1 \times \cdots \times C_k$ be the direct product of k copies of the quasicyclic p-group $C_p\infty$. Let $\epsilon_0: G_{v(0)} \to R$ be the (obvious) embedding of $G_{v(0)}$ in R. In the fundamental group $G = \pi(\mathcal{G}, X)$, if a neighbouring vertex group of $G_{v(0)}$ is the $G_{v(1)}$, we have $H_{\iota(e)}\theta_e = H_{\tau(\theta)}$ for the edge groups $(i(e) = v(0), \tau(e) = v(1))$. So we have an embedding ϵ_1 $\theta_e^{-1} \circ \epsilon_0 : H_{\tau(e)} \to R$. Let $\overline{H}_{\tau(e)}$ be a minimal direct factor of $G_{v(1)}$ such that $H_{\tau(e)} \leq \overline{H}_{\tau(e)}((r_p(H_{\tau(e)}) = r_p(\overline{H}_{\tau(e)}))$ and $G_1 = \overline{H}_{\tau(e)} \times L_1)$. Since Ris divisible, ϵ_1 can be extended to a monomorphism $\epsilon_1:\overline{H}_{\tau(e)}\to R$ and finally, since $r_p(G_{v(1)} \leq r_p(G_{v(0)}))$, we can have an embedding $\epsilon_1: G_{v(1)} \to R$ (The complement L_1 of $\overline{H}_{\tau(e)}$ in $G_{v(1)}$ is embedded into M_1 , a complement of $\overline{\overline{H}}_{\tau(e)}\epsilon_1$ in R, where $\overline{\overline{H}}_{\tau(e)}\epsilon_1$ is a minimal factor of R of $r_p(\overline{H}_{\tau(e)})$ many copies of $C_p \infty$ such that $\overline{H}_{\tau(e)} \epsilon_1 \leq \overline{\overline{H}_{\tau(e)} \epsilon_1}$, $(R = \overline{\overline{H}_{\tau(e)} \epsilon_1} \times M_1)$). Similarly continuing we can embed all the vertex groups $G_{v(i)}$, $v(i) \in V(X)$, with monomorphisms $\epsilon_i:G_{v(i)}\to R$. Since in the fundamental group we have the relations $H_{\tau(e)}\theta_e = H_{\tau(e)}$ for $e \in E(X)$, the monomorphisms ϵ_i can be extended to a common homomorphism $\epsilon: G = \pi(\mathcal{G}, X) \to R$. The pair $(\epsilon, G\epsilon)$ is a realization of $\pi(\mathcal{G}, X)$ in R with respect to the vertex groups $G_{v(i)}, \ v(i) \in V(X)$ (cf. [9]). It is easy to see that $Ker \ \epsilon \cap G_{v(i)} = 1$ for $v(i) \in V(X)$. Therefore the kernel of ϵ is a free group.

Let $\mathcal{L}(\mathcal{G},X)$ be a graph of groups over the connected finite graph X

with vertex groups finite abelian p-groups. Suppose that in each circuit C with core H the induced automorphism φ has order a power of p. If T is a maximal tree of X and $G_T = \pi(\mathcal{G}, T)$ the corresponding fundamental group over T with vertex groups $G_{v(i)}, \ v(i) \in V(X) = V(T)$ and edge groups $H_{\iota(e)}\theta_e = H_{\tau(e)}, \ e \in E(T)$, then in the realization $(\epsilon, G_T \epsilon)$ of G_T the image $(G_T)\epsilon = K$ is a finite abelian p-group. For each $e_i \in E(X) \setminus$ E(T) the isomorphism θ_{e_j} , where $(H_{\iota(e_j)})\theta_{e_j}$, induces an isomorphism φ_j : $(H_{\iota(e_j)})\epsilon \to (H_{\tau(e_j)})\epsilon$ in the realization of G_{τ} . By Proposition 10 there is a finite abelian p-group V with $K \leq V$ and $\theta_1, \theta_2, \ldots, \theta_v \in \text{Aut}V$ with $o(\theta_j) = p^{\lambda_j}, \ \theta_{j|H_j\epsilon} = \varphi_j$, where H_j are the cores of the loops in the resulting graph of groups by contracting the maximal tree T to a point. Let Y be the subgroup of the holomorph of V defined by the right regular representation R(V) of V and the group $W = \langle \theta_1, \theta_2, \dots \theta_v \rangle$ (Y = R(V)|W). The map $\overline{\epsilon}: G = \pi(\mathcal{G}, X) \to Y$ defined by $G_{v(i)}\overline{\epsilon} = G_{v(i)}\epsilon$ for $v(i) \in V(X)$ and $t_j \bar{\epsilon} = \theta_j$ for each generator which corresponds to the loop with core H_j , is well defined. The map $\bar{\epsilon}$ is a group homomorphism because the relations of the type $t_j^{-1}H_{i(e_j)}t_j=H_{\tau(e_j)}$ in $G=\pi(\mathcal{G},X)$ are sent to $\theta_j^{-1}H_{\iota(e_j)}\epsilon\cdot\theta_j=(H_{\iota(e_j)}\epsilon)\theta_j=H_{\tau(e_j)}\epsilon$ in Y by $\overline{\epsilon}$. Also $Ker\ \overline{\epsilon}\cap G_{v(i)}=1$, since $Ker\ \epsilon\cap G_{v(i)}=1$

We are now in a position to state.

Proposition 11. Let $\mathcal{L}(\mathcal{G}, X), V, W, Y$ be as above. If W is a finite p-group, then the fundamental group $G = \pi(\mathcal{G}, X)$ is \mathcal{RF}_p .

Proof. The group G is free by finite-p, since $Ker \bar{\epsilon}$ is a free group. \Box

The necessary condition stated in Corollary 3.1, where each automorphism θ_j corresponding to the circuit C_j , considered by itself, must have order a power of p, is not known to be sufficient, becasue we do not know if the group $W = \langle \theta_1, \theta_2, \dots, \theta_v \rangle$ is a p-group.

Let $\mathcal{L}(\mathcal{G}, X)$ be a graph of groups with the properties

- (i) The graph X is a tree.
- (ii) There is a vertex v(0) called the vertex of level zero.
- (iii) The vertex v(0) is joined with vertices of level one. Inductively a vertex v(n) of level n > 0 is joined by an edge to exactly one vertex of level n-1 (since X is a tree) and either it is a terminal vertex or the other vertices joined with it are of level n+1.

- (iv) All the vertex groups, except (possibly) the vertex group $G_{v(0)}$ of level zero, are finite abelian p-groups.
- (v) If $G_{v(i)}$, $G_{v(i+1)}$ are two vertex groups of levels i and i+1 linked by the edge groups $H_{\iota(e)} \cong H_{\tau(e)}$, $(\iota(e) = v(i), \ \tau(e) = v(i+1))$, then $r_p(H_{\tau(e)}) = r_p(G_{v(i+1)})$.

The graph $\mathcal{L}(\mathcal{G},X)$ with the properties (i)-(v) is said to be a graph of strong cohesion. So if $G_{v(0)}, G_{v(1)}, \ldots, G_{v(n)}, \ldots$ are the vertex groups along a path with starting point the vertex of level zero, then there exists an index n_0 such that $r_p(G_n) = r_p(G_{n_0})$ for every $n \geq n_0$.

Lemma 12. Let $\mathcal{L}(\mathcal{G}, X)$ be a graph of strong cohesion, where the exponents of $G_{v(i)}$, $v(i) \in V(X)$, $i \neq 0$ are bounded. The fundamental group $G = \pi(\mathcal{G}, X)$ has infinitely p-divisible elements if and only if the vertex group $G_{v(0)}$ has.

Proof. Suppose that the equation $g = x^{p^n}$, $g \neq 1$, has solutions for infinitely many $n \in \mathbb{N}$. By Lemma 4, the element g and every root of $x^{p^n} = g$ belong to conjugates of vertex groups. Let p^m be an upper bound of the exponents of $G_{v(i)}$, $v(i) \in V(X)$ $i \neq 0$, then $x^{p^n} = 1$ for every $x \in G_{v(i)}$ for all $v(i) \in V(X)$ $i \neq 0$ and $n \geq m$, a contradiction, unless the roots of $x^{p^n} = g$ belong to $G_{v(0)}$ for almost all $n \in \mathbb{N}$. Therefore $G_{v(0)}$ has infinitely p-divisible elements. \square

Theorem 13. Let $\mathcal{L}(\mathcal{G}, X)$ be a graph of strong cohesion with the vertex group $G_{v(0)}$ of level zero a finite abelian p-group. For the fundamental group $G = \pi(\mathcal{G}, X)$ the following propositions are equivalent.

- (i) The exponents of the vertex groups $G_{v(i)}, v(i) \in V(X)$ are bounded.
- (ii) The realization $\epsilon: G \to R$ has finite image $G\epsilon$.
- (iii) The group G is \mathcal{RF}_p .
- (iv) The group G does not have infinitely p-divisible elements.
- *Proof.* (i) \Rightarrow (ii) It is easy to see that the image $G\epsilon$ is finite, since the graph is of strong cohesion and the exponents of $G_{v(i)}, v(i) \in V(X)$ are bounded.
- (ii) \Rightarrow (iii) The group G is a free by finite p-group, since $Ker\ \epsilon$ is a free group.
 - $(iii) \Rightarrow (iv)$ Lemma 1.
- $(iv) \Rightarrow (i)$ Suppose that the exponents of $G_{v(i)}$, $v(i) \in V(X)$ are not bounded. Then there is a sequence of $x_n \in G_{v(n)}$ in the vertex groups

with unbounded orders. Because of the strong cohesion of $\mathcal{L}(\mathcal{G},X)$ there is $m_n \in \mathbb{N}$ such that $1 \neq x_n^{p^{m_n}} \in G_{v(0)}$. The group $G_{v(0)}$ is finite so there are infinitely many of $x_n^{p^{m_n}}$ which coincide on a common element $x_0 \in G_{v(0)}$. Therefore $x_0 = x_n^{p^{m_n}}$, a contradiction, since the orders of x_n are unbounded and G has not infinitely p-divisible elements. \square

Corollary 13.1. If the tree X is finite, then the fundamental group $G = \pi(\mathcal{G}, X)$ is \mathcal{RF}_p .

Corollary 13.2. Let $\mathcal{L}(\mathcal{G}, X)$ be a graph of finite abelian p-groups over the finite tree X. Without the assumption that $\mathcal{L}(\mathcal{G}, X)$ is of strong cohesion, the fundamental group $G = \pi(\mathcal{G}, X)$ is \mathcal{RF}_p .

Proof. Because of the construction of the realization, since X is finite, we have that $G = \pi(\mathcal{G}, X)$ is a free by finite p-group. \square

4. The residual p-finiteness of the fundamental group of a tree of free abelian groups.

Let $\mathcal{L}(\mathcal{G},X)$ be a graph of groups with vertex groups finitely generated free abelian groups over the tree X. Suppose that there is a vertex group $G_{v(0)}$ such that $r(G_{v(i)}) \leq r(G_{v(0)}) = k$, $v(i) \in V(X)$ where $r(G_{v(i)})$ is the (free) rank of $G_{v(i)}$. Let $R = \mathbb{Q} \times \cdots \times \mathbb{Q}$ be the direct product of k copies of $(\mathbb{Q}, +)$. Then the natural embedding of $G_{v(0)}$ in R, $\epsilon_0 : G_{v(0)} \to R$ can be extended to a homomorphism $\epsilon : G = \pi(\mathcal{G}, X) \to R$, by the definition of the fundamental group $G = \pi(\mathcal{G}, X)$. It is easy to see that $Ker \epsilon \cap G_{v(i)} = 1$, $v(i) \in V(X)$. So we have a realization of the fundamental group $G = \pi(\mathcal{G}, X)$.

In a similar way with definition preceding Lemma 12 we can define a graph of groups of strong cohesion in the case where the vertex groups are free abelian groups of finite rank. Simply we replace the statements (iv) and 9v) there by:

- (iv') All the vertex groups, except (possibly) the vertex group $G_{v(0)}$ of level zero, are finitely generated free abelian groups.
- (v') If $G_{v(i)}$, $G_{v(i+1)}$ are two vertex groups of levels i and i+1 linked by the edge groups $H_{\iota(e)}\cong H_{\tau(e)}$, $(\iota(e)=v(i),\ \tau(e)=v(i+1))$, then $r(H_{\tau(e)})=r(G_{v(i+1)})$. Namely $H_{\tau(e)}$ is of finite index in $G_{v(i+1)}$.

Proposition 14. Let $\mathcal{L}(\mathcal{G}, X)$ be a graph of groups over the connected graph X with vertex groups G_v , $v \in V(X)$, finitely generated abelian groups.

Suppose that the fundamental group $G = \pi(\mathcal{G}, X)$ is \mathcal{RN} . If G_v , G_u are two neighbouring vertex groups joined by the edge e ($\iota(e) = v, \tau(e) = u$), then $|\overline{H}_{\iota(e)}: H_{\iota(e)}| = q^{v(e)}$ and $|\overline{H}_{\tau(e)}: H_{\tau(e)}| = q^{v(\overline{e})}$, for a prime q and v(e), $v(\overline{e}) \geq 0$, where $\overline{H}_{\iota(e)}$ (resp. $\overline{H}_{\tau(e)}$) is the direct factor of $G_v(G_u)$ such that $H_{\iota(e)} \leq \overline{H}_{\iota(e)}$ ($H_{\tau(e)} \leq \overline{H}_{\tau(e)}$) and $r(\overline{H}_{\iota(e)}) = r(H_{\iota(e)})$ ($r(\overline{H}_{\iota(e)}) = r(H_{\tau(e)})$). Moreover if G if \mathcal{RF}_p , then q = p and $|\overline{H}_{\iota(e)}: H_{\iota(e)}| = p^{v(e)}$ for every $e \in E(X)$.

Proof. Let G_v, G_u be two neighboring vertex groups. Without loss of generality we can suppose that there is a $x \in \overline{H}_{\iota(e)} \setminus H_{\iota(e)}$. If there are two different primes p,q such that $p \mid |\overline{H}_{\iota(e)} : H_{\iota(e)}|$ and $q \mid |\overline{H}_{\tau(e)} : H_{\tau(e)}|$, then we can choose $x \in \overline{H}_{\iota(i)}$ and $y \in \overline{H}_{\tau(e)}$ such that $x^p \in H_{\iota(e)}$ and $y^q \in H_{\tau(e)}$ and since $x \notin H_{\iota(e)}$ we have $[x,y] \neq 1$ and $[x,y]^p \equiv [x^p,y] \equiv 1$ mod $\gamma_3(G)$, $[x,y]^q \equiv [x,y^q] \equiv 1 \mod \gamma_3(G)$, whence $1 \neq [x,y] \in \gamma_3(G)$. Similarly $[x,y] \in \gamma_n(G)$ for every $n \in \mathbb{N}$. If $y \in G_u$, then [x,y]N = [xN,yN] = [aN,yN], where $a \in H$. Hence [x,y]N = [a,y]N = N. Therefore $[x,y] \in N$ for every NG with $|G:N| = p^{\lambda}$, a contradiction, since G is \mathcal{RN} . so p = q.

If G is \mathcal{RF}_p and there is a prime q such that $q \mid |\overline{H}_{\iota(e)} : H_{\iota(e)}|$, then for a $x \in G_v$ such that $x^q \in H_{\iota(e)}$, we have that $x \in \cap \{H_{\iota(e)}N \mid N \triangleleft G \text{ such that } |G:N| = p^{\lambda}\}$, a contradiction, since G is \mathcal{RF}_p and as we point out above, we can find $x \in G_v$ such that $[x, y] \neq 1$. \square

Let $\mathcal{L}(\mathcal{G},X)$ be a graph of groups of strong cohesion over the tree X. Suppose that the vertex group G_0 of level zero is a finitely generated free abelian group. Let $(\epsilon,G\epsilon)$ be the realization of the fundamental group $\pi(\mathcal{G},S)$ in R ($R=\mathbb{Q}\times\cdots\times\mathbb{Q}$, k copies of \mathbb{Q} , $k=r(G_0)$). Let p be a prime and $f_n=\epsilon\circ\varphi_n$ $n\in\mathbb{N}$, where $\varphi_n:G\epsilon\to G\epsilon/(G\epsilon)^{p^n}$ is the natural epimorphism. If $K_n=Ker\ f_n\ n\in\mathbb{N}$, then every element $gK_n\in G/K_n$ is of bounded order, since $(g^{p^n})f_n=(g^{p^n})\epsilon\circ\varphi_n=(g\epsilon)^{p^n}(G\epsilon)^{p^n}=(G\epsilon)^{p^n}$. Therefore each coset group $G_{v(i)}K_n/K_n$ is finite.

Proposition 14 gives a necessary condition for the \mathcal{RF}_p of the fundamental group of a graph of groups with vertex groups f.g. abelian groups. Now we give a sufficient condition.

Proposition 15. Let $\mathcal{L}(\mathcal{G}, X)$ be a graph of groups of strong cohesion over the tree X with the vertex group G_0 of level zero a f.g. free abelian group.

Moreover we suppose that for every $e \in E(X)$ there exists a prime p and $v(e) \geq 0$ such that $|\overline{H}_{\iota(e)}| : H_{\iota(e)}| = p^{v(e)}$. Then the following statements are equivalent.

- (i) $\cap_n G^{p^n} Ker \epsilon = Ker \epsilon$
- (ii) $\cap_n(G_{v(i)} \cap K_n) = 1, \ v(i) \in V(X).$
- (iii) The realization $G\epsilon$ has no elements of infinite p-height.
- Proof. (i) \Rightarrow (ii) By definition above $K_n = Ker f_n$, so $K_n = G^{p^n} Ker \epsilon$. But $\bigcap_n G^{p^n} Ker \epsilon = Ker \epsilon$ and $G_{v(i)} \cap Ker \epsilon = 1, v(i) \in V(X)$, whence $\bigcap_n (G_{v(i)} \cap K_n) = 1, \ v(i) \in V(X)$.
- (ii) \Rightarrow (iii) Let $g\epsilon \in G\epsilon$ be an element of infinite p-height. If $g = x_1 \cdots x_k$, $x_j \in G_{v(j)}$, then $g\epsilon = (y_n\epsilon)^{p^n}$ for infinitely many $n \in \mathbb{N}$. Since $x_j \in G_{v(j)}$, the graph is of strong cohesion and $G\epsilon$ is abelian, there exists $\lambda(g) = \lambda \in \mathbb{N}$ such that $x_j^{p^{\lambda}} \in G_0$ for $j = 1, \ldots, k$. Therefore $(g^{p^{\lambda}})\epsilon = (x_1^{p^{\lambda}} \cdots x_k^{p^{\lambda}})\epsilon = (y_n\epsilon)^{p^{n+\lambda}}$, and we can suppose that there is a $h \in G_0$ $(h = x_k^{p^{\lambda}})$ such that $h\epsilon$ has infinite p-height. So $h\epsilon \in \bigcap_n (G\epsilon)^{p^n}$, namely $h \in \bigcap_n K_n$ which implies $h \in \bigcap_n (G_0 \cap K_n) = 1$. So $x_1^{p^{\lambda}} \cdots x_k^{p^{\lambda}} = 1$ and $(y_n\epsilon)^{p+\lambda} = 1$, but $G\epsilon$ is torsion free, whence $y_n\epsilon = 1$ and $g\epsilon = 1$. Therefore the group $G\epsilon$ has not elements of infinite p-height. So $\bigcap_n (G\epsilon)^{p^n} = 1$.
- (iii) \Rightarrow (i) Since $\bigcap_n (G\epsilon)^{p^n} = 1$, we have $1 = \bigcap_n (G\epsilon)^{p^n} = \bigcap_n (G^{p^n})\epsilon = \bigcap_n (G^{p^n} Ker \epsilon)\epsilon \supseteq (\bigcap_n G^{p^n} Ker \epsilon)\epsilon$. Therefore $\bigcap_n G^{p^n} Ker \epsilon \subseteq Ker \epsilon$. \square

Corollary 15.1. Suppose that one of the (i) - (iii) of the Proposition 15 is valid, then the fundamental group $G = \pi(\mathcal{G}, X)$ is \mathcal{RF}_p .

Proof. For every $n \in \mathbb{N}$ we can define a new graph of groups, say $\mathcal{L}(\mathcal{G}_n, X)$, over the same underlying tree X, where to each vertex $v(i) \in V(X)$ we assign the group $G_{v(i)}K_n/K_n$ and to each edge $e \in E(X)$ with $\iota(e) = v(i)$ we assign the "induced" subgroups $H_{\iota(e)}K_n/K_n \cong H_{\tau(e)}K_n/K_n$. If $r(H_{\tau(e)}) = r(G_{v(i)})$, where $\tau(e) = v(i)$, (the graph $\mathcal{L}(\mathcal{G}, X)$ is of strong cohesion), then there exists a sufficiently large $n \in \mathbb{N}$ such that $r_p(H_{T(e)}K_n/K_n) = r_p(G_{v(i)}K_n/K_n)$. So the graph $\mathcal{L}(\mathcal{G}_n, X)$ is of strong cohesion. Therefore the fundamental group $\overline{G}_n = \pi(\mathcal{G}_n, X)$ is \mathcal{RF}_p from Theorem 13. The epimorphism $\theta_i : G_{v(i)} \to G_{v(i)}K_n/K_n$, $v(i) \in V(X)$, evidently, can be extended to a common homomorphism $\overline{\theta} : G = \pi(\mathcal{G}, X) \to \overline{G}_n = \pi(\mathcal{G}_n, X)$.

Since $\bigcap_n (G_{v(i)} \cap K_n) = 1$, $v(i) \in V(X)$, we have that for $g \in G$, $g \neq 1$, there exists $n \in \mathbb{N}$ such that $g\overline{\theta} \neq 1$, and finally G is \mathcal{RF}_n . \square

Corollary 15.2. Let $\mathcal{L}(\mathcal{G}, X)$ be a graph of finitely generated free abelian groups over the finite tree X. without the assumption that $\mathcal{L}(\mathcal{G}, X)$ is of strong cohesion, the fundamental group $G = \pi(\mathcal{G}, X)$ is \mathcal{RF}_p if and only if $|\overline{H}_{i(e)}: H_{i(e)}| = p^{v(e)}$ for every $e \in E(X)$.

Proof. It is clear that the realization $G\epsilon$ of G is finitely generated, since X is finite. So the result follows from the Proposition 14 and the proof of the Proposition 15. \square

REFERENCES

- S. Andreadakis, E. Raptis, D. Varsos, Extending isomorphisms to automorphisms, Arch. Math. 53 (1989), 121-125.
- 2. H. Bass, Covering theory for graphs of groups, J.P.A.A. 89 (1993), 3-47.
- 3. K.W. Gruenberg, Residual properties of infinite soluble groups, Proc. London Math. Soc. 7 (1957), 29-62.
- 4. G. Higman, Amalgams of p-Groups, J. Algebra 1 (1964), 301-305.
- 5. A. L. Lichtman, Necessary and sufficient conditions for the residual nilpotence of free products of groups, J.P.A.A. 12 (1978), 49-64.
- A.I. Malc'ev, Generalized nilpotent Algebras and their adjoint groups, Amer. Math. Soc. Translations (2) 69 (1968), 1-21.
- E. Raptis, D. Varsos, Residual properties of HNN-extensions with base group an abelian group, J.P.A.A. 59 (1989), 285-290.
- 8. _____, The residual nilpotence of HNN-extensions with base group a finite or a fg abelian group, J.P.A.A. 76 (1991), 167-178.
- 9. _____, On the subgroup separability of the fundamental group of a finite graph of groups, (To appear in Demonstratio Mathematica).
- 10. J.P. Serre, Trees, Springer-Verlag.

Received November 15, 1993 Revised version received May 6, 1995

Department of Mathematics, University of Athens, Panepistemiopolis 15784, Athens, GREECE