Розов А.В. О финитной аппроксимируемости некоторых обобщенных свободных произведений разрешимых групп конечного ранга.
    Моделирование и анализ информационных систем. 2013. Т.20, № 1. С.124-132.


Пусть G - свободное произведение финитно аппроксимируемых почти разрешимых групп A и B конечного ранга с объединенной подгруппой H, отличной от A и B. И пусть в группе H существует подгруппа W конечного индекса, нормальная в A и B. Доказано, что группа G финитно аппроксимируема тогда и только тогда, когда подгруппа H финитно отделима в группах A и B. Доказано также, что если в группах A и B все подгруппы финитно отделимы, то в группе G все конечно порожденные подгруппы финитно отделимы.

Полный текст статьи (PDF, 282 Кб)