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Abstract—Let C be a root class of groups and π1(G) be the fundamental group of a graph G
of groups. We prove that if G has a finite number of edges and there exists a homomorphism of π1(G)
onto a group of C acting injectively on all the edge subgroups, then π1(G) is residually a C-group.
The main result of the paper is that the inverse statement is not true for many root classes of groups.
The proof of this result is based on the criterion for the fundamental group of a graph of isomorphic
groups to be residually a C-group, which is of independent interest.
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1. INTRODUCTION. STATEMENT OF RESULTS

Let us recall that if C is a class of groups, then a group X is said to be residually a C-group if,
for any element x ∈ X \ {1}, there exists a homomorphism of X onto a group of C (C-group) mapping
x to a nonidentity element.

The first results on the residuality of groups appeared in the 30s of the XX century. Soon after, it
became clear that when proving the residuality of one and the same group by different classes of groups,
similar reasoning schemes were often used, and therefore it is natural to try to carry out the proofs
once, using the general properties of the indicated classes. One of the first to implement this idea was
K. Gruenberg [1], who proposed the concept of the root class of groups. Following his definition, we say
that a class C of groups is root if it is nontrivial (i. e., contains at least one nonidentity group) and satisfies
the following conditions:

1) C is closed under taking subgroups;
2) C is closed under taking direct products of a finite number of factors;
3) if 1 � Z � Y � X is a subnormal series of a group X and X/Y , Y/Z ∈ C, then there exists

a normal subgroup T of X such that T � Z and X/T ∈ C.
It is easy to see that in the above definition, the second condition follows from the third and therefore is

redundant. The third condition, now commonly called the Gruenberg condition, is utilitarian in nature
and allows one to prove a number of statements that turn out to be very useful in studying the residuality
of free constructions of groups (see Proposition 5 below). At the same time, the Gruenberg condition
makes it difficult to understand what the root classes of groups are as a whole. The situation is clarified by

Proposition 1 [2]. Let C be a nontrivial class of groups closed under taking subgroups. Then
the following statements are equivalent.

1. C satisfies the Gruenberg condition and therefore is root.
2. C is closed under taking Cartesian wreath products.
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3. C is closed under taking extensions and, together with any two groups X, Y , contains
the Cartesian product

∏
y∈Y Xy, where Xy is an isomorphic copy of X for each y ∈ Y .

It follows easily from Proposition 1 that the intersection of any number of root classes of groups again
turns out to be a root class if it contains at least one nonidentity group. Concrete examples of root classes
include classes of all finite groups, finite p-groups (where p is a prime number), periodic π-groups of finite
period (where π is an arbitrary set of primes), solvable groups, and all torsion-free groups.

The first results on the residuality by an arbitrary root class of groups were obtained already in [1].
However, the path to a systematic study of the root-class residuality of free constructions of groups
was opened only by the remark made by D.N. Azarov, that every free group is residually a C-group
for each root class C [3]. In recent years, quite a lot of results have been obtained on the root-class
residuality of generalized free products and HNN-extensions [2–13]. This article is devoted to the study
of the root-class residuality of the fundamental groups of arbitrary graphs of groups. Unless otherwise
specified, all graphs considered below are assumed to be nonempty, non-oriented, and not necessarily
connected. The number of vertices and edges in them does not have to be finite; multiple edges and loops
are allowed.

Let Γ = (V,E) be an arbitrary graph with the set of vertices V and the set of edges E. Denote
the vertices of Γ that are the ends of an edge e ∈ E by e(1), e(−1), and associate to each vertex
v ∈ V a group Gv and to each edge e ∈ E a group He and injective homomorphisms ϕ+e : He → Ge(1),
ϕ−e : He → Ge(−1). As a result, we obtain the graph of groups

G(Γ) =
(
Γ, Gv (v ∈ V ), He, ϕ±e (e ∈ E)

)

corresponding to the graph Γ. We call the groups Gv and the subgroups H+e = Heϕ+e, H−e = Heϕ−e

the vertex groups and the edge subgroups respectively.
We note that in G(Γ), two, in general, different homomorphisms ϕ+e, ϕ−e are associated with

an edge e even if e is a loop, i. e., e(1) = e(−1). We also note that, unlike the graph Γ, the graph
of groups G(Γ) can be considered oriented if necessary, assuming that the homomorphism ϕ+e corre-
sponds to the beginning, while the homomorphism ϕ−e does to the end of an edge e.

Let us fix some maximal forest F = (V,EF ) of Γ. The fundamental group of the graph of groups
G(Γ) is the group

π1(G(Γ)) =
〈
Gv (v ∈ V ), te (e ∈ E \ EF );

hϕ+e = hϕ−e (e ∈ EF , h ∈ He), t
−1
e hϕ+ete = hϕ−e (e ∈ E \ EF , h ∈ He)

〉
,

whose generators are the generators of Gv (v ∈ V ) and symbols te (e ∈ E \ EF ), and whose defining
relations are the relations of Gv (v ∈ V ) and all possible relations of the forms hϕ+e = hϕ−e (e ∈ EF ,
h ∈ He), t−1

e hϕ+ete = hϕ−e (e ∈ E \EF , h ∈ He) where hϕεe (ε = ±1) is a word in the generators
of Ge(ε) defining the image of h underϕεe. Obviously, the presentation of π1(G(Γ)) depends on the choice
of the maximal forest F . It is known, however, that all the groups with presentations described above
corresponding to the different maximal forests of Γ are isomorphic [14, § 5.1]. This allows us to refer
the fundamental group of a graph of groups without mentioning a particular maximal forest.

Note that if Γ contains two vertices v, w and an edge e connecting them, then π1(G(Γ)) is a free
product of Gv and Gw with the amalgamated subgroups H+e and H−e; if Γ has one vertex v and a loop e
at this vertex, then π1(G(Γ)) is an HNN-extension of Gv with one stable letter te and the associated
subgroups H+e and H−e (the terminology regarding generalized free products and HNN-extensions,
which is used here and further, is agreed with the monographs [15, 16]). In [3, 4], the quite useful
sufficient conditions for the root-class residuality of the above constructions were proved; they can be
formulated as follows.

Proposition 2 [3, Theorem 3; 4, Theorem 4.1]. Let C be a root class of groups, G be a free product
of residually C-groups A and B with amalgamated subgroups H � A and K � B or an HNN-
extension of a residually C-group B with associated subgroups H � B and K � B. If there exists
a homomorphism of G onto a group of C acting injectively on H and K, then G is residually a C-
group.

In this paper, Proposition 2 is generalized as follows.
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Theorem 1. Let C be a root class of groups, Γ = (V,E) be a graph with a finite number of edges,
G(Γ) =

(
Γ, Gv (v ∈ V ), He, ϕ±e (e ∈ E)

)
be a corresponding graph of groups and all Gv (v ∈ V )

be residually C-groups. If there exists a homomorphism of π1(G(Γ)) onto a group of C acting
injectively on all the subgroups Hεe (e ∈ E, ε = ±1), then π1(G(Γ)) is residually a C-group.

The aim of this paper is to discuss the truth of the statement inverse to Theorem 1 (including the case
when Γ is an arbitrary graph). Note that if there exists a homomorphism σ with the properties indicated
in this theorem, then every subgroup Hεe (e ∈ E, ε = ±1) embeds in the C-group π1(G(Γ))σ and itself
belongs to C because this class is root and hence is closed under taking subgroups. Thus, it makes sense
to formulate the question of interest to us as follows.

Question. Let C be a root class of groups, Γ = (V,E) be an arbitrary graph and G(Γ) =(
Γ, Gv (v ∈ V ), He, ϕ±e (e ∈ E)

)
be a corresponding graph of groups. Let also all Gv (v ∈ V ) be

residually C-groups and all Hεe (e ∈ E, ε = ±1) belong to C. Under what conditions does the C-
residuality of π1(G(Γ)) imply the existence of a homomorphism of this group onto a group of C
acting injectively on all the subgroups Hεe (e ∈ E, ε = ±1)?

The interest in the formulated question is explained as follows. The widely used approach to the study
of the C-residuality of free constructions of groups, going back to [17], includes two main steps.
At step 1, the C-residuality of some construction composed of groups belonging to the class C is ex-
plored. At step 2, we study the C-residuality of the same construction, but formed already from arbitrary
residually C-groups, and the task is to find the conditions under which this construction is residually
a construction explored in step 1. It turns out, however, that in step 2, the criterion for the C-residuality
of the studied construction, made up of C-groups, may not be enough. It is required to know when
such a construction has a homomorphism onto a C-group that is injective on all its edge subgroups
(see [7, 8]). Theorem 2 given below describes some cases in which the indicated homomorphism exists.
Preceding its formulation, we recall that a group is said to be of finite Hirsch–Zaitsev rank if it has
a finite subnormal series, all of whose factors are periodic or infinite cyclic groups [18].

Theorem 2. Let C be a class of groups closed under taking subgroups and direct products
of a finite number of factors, Γ = (V,E) be a graph with a finite number of edges and G(Γ) =(
Γ, Gv (v ∈ V ), He, ϕ±e (e ∈ E)

)
be a corresponding graph of groups. Let also at least one

of the following conditions take place:
1) all the subgroups Hεe (e ∈ E, ε = ±1) are finite and π1(G(Γ)) is residually a C-group;
2) all the subgroups Hεe (e ∈ E, ε = ±1) are of finite Hirsch–Zaitsev rank and π1(G(Γ)) is

residually a torsion-free C-group.
Then there exists a homomorphism of π1(G(Γ)) onto a group of C acting injectively on all

the subgroups Hεe (e ∈ E, ε = ±1).
From Theorem 2 it follows, in particular, that if C is a root class consisting only of finite groups and all

the edge subgroups of π1(G(Γ)) are contained in this class, then Theorem 1 turns into a criterion. This
explains the fact that, despite many years of research on the property of residual finiteness, the question
formulated above arose only now, with the beginning of a systematic study of the residuality of free
constructions by arbitrary root classes of groups.

The main result of the present paper is Theorem 3 below, which states that for many root classes
of groups, the residuality of the fundamental group of a graph of groups is a weaker statement than
the existence of a homomorphism of this group injective on all its edge subgroups.

Theorem 3. Let C be a root class of groups containing at least one infinite group and not
containing some (absolutely) free group of finite or countable rank. Then, for any graph Γ =
(V,E), there exists a corresponding graph of groups G(Γ) =

(
Γ, Gv (v ∈ V ), He, ϕ±e (e ∈ E)

)

such that:
1) all Gv (v ∈ V ) are residually C-groups;
2) all Hεe (e ∈ E, ε = ±1) belong to C;
3) π1(G(Γ)) is residually a C-group;
4) for any homomorphism σ of π1(G(Γ)) onto a group of C and for any e ∈ E, ε = ±1,

the relation ker σ ∩Hεe �= 1 holds.
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We note that the condition of Theorem 3 is satisfied, in particular, by any root class consisting only
of periodic groups and containing at least one infinite group.

The proof of Theorem 3 is based on the criterion for the root-class residuality of the fundamental
groups of graphs of isomorphic groups that generalizes a series of results from [3, 4] and is of independent
interest. We give the necessary definitions.

Let Γ = (V,E) be an arbitrary graph and G(Γ) =
(
Γ, Gv (v ∈ V ), He, ϕ±e (e ∈ E)

)
be a corre-

sponding graph of groups. Let also, for any v,w ∈ V , there exist an isomorphism αv,w : Gv → Gw

and the set {αv,w|v,w ∈ V } satisfy the following conditions:
1) ∀v ∈ V αv,v = idGv (where idGv is the identity map of Gv to itself);

2) ∀u, v, w ∈ V αu,vαv,w = αu,w (in particular, ∀v,w ∈ V αw,v = α−1
v,w);

3) ∀e ∈ E ∀ε = ±1 αe(ε),e(−ε)|Hεe
= ϕ−1

εe ϕ−εe.

Then G(Γ) will be called the graph of isomorphic groups.
Recall also that a subgroup Y of a group X is said to be separable in this group by a class

of groups C (or, briefly, C-separable) if, for each x ∈ X \ Y , there exists a homomorphism σ of X
onto a group of C such that xσ /∈ Y σ [19].

Theorem 4. Let C be a root class of groups, Γ = (V,E) be an arbitrary graph and G(Γ) =(
Γ, Gv (v ∈ V ), He, ϕ±e (e ∈ E), αv,w (v,w ∈ V )

)
be a corresponding graph of isomorphic groups.

Then π1(G(Γ)) is residually a C-group if and only if all Gv (v ∈ V ) are residually C-groups
and, for any e ∈ E, ε = ±1, Hεe is C-separable in Ge(ε).

The second section of the paper contains a number of necessary auxiliary definitions and statements.
The remaining sections are devoted to the proof of Theorems 1–4.

2. SOME KNOWN STATEMENTS

If C is a class of groups and X is an arbitrary group, then we denote by C∗(X) the family of all normal
subgroups of X, the quotient groups by which belong to C. The subgroups of C∗(X) will be called
co-C-subgroups of X.

Proposition 3 [10, Proposition 1]. Let C be a class of groups closed under taking subgroups
and direct products of a finite number of factors, X be a group. Then the intersection of a finite
number of subgroups of C∗(X) again belongs to this family.

Proposition 4. Let C be a class of torsion-free groups closed under taking subgroups and direct
products of a finite number of factors. Then the following statements take place.

1. If X is residually a C-group and Y is a subgroup of X having finite Hirsch–Zaitsev rank,
then there exists a subgroup Z ∈ C∗(X) such that Z ∩ Y = 1 [10, Proposition 11].

2. If X is residually a C-group and Y is a polycyclic subgroup of X, then Y is C-separable
in X [20, Proposition 1].

Proposition 5. Let C be a root class of groups. Then the following statements take place.
1. Every free group is residually a C-group [3, Theorem 1].
2. The direct and free products of an arbitrary number of residually C-groups are also

residually C-groups [1, Lemma 1.1, Theorem 4.1; 3, Theorem 2].
3. Any extension of a residually C-group by a group of C is residually a C-group [1, Lemma 1.5].
Suppose that until the end of this section, P denotes the free product of groups A and B with

subgroups H � A and K � B amalgamated according to an isomorphism ϕ : H → K, Q denotes
the HNN-extension of a group C with a stable letter t and subgroups L � C and M � C associated
by an isomorphism ψ : L → M . Recall that the presentation of an element x ∈ P in the form x =
x1x2 . . . xm, where m � 1, x1, x2, . . . , xm ∈ A ∪B, is called reduced if, for m > 1, no neighboring
factors xi, xi+1 lie simultaneously in A or B. Recall also that the presentation of an element y ∈ Q
in the form y = y0t

δ1y1 . . . t
δnyn, where n � 0, y0, y1, . . . , yn ∈ C, δ1, . . . , δn ∈ {1,−1}, is called

reduced if, for any i ∈ {1, . . . , n− 1}, it follows from the relations −δi = 1 = δi+1 that yi /∈ L and from
the relations δi = 1 = −δi+1 that yi /∈ M . The numbers m and n are called the lengths of these
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forms. The following two statements can be deduced from the normal form theorem for generalized
free products [15, Corollary 4.4.1] and Britton’s lemma for HNN-extensions [16, Ch. IV, § 2].

Proposition 6. An arbitrary element x ∈ P having a reduced form of length greater than 1 is
not equal to 1.

Proposition 7. An arbitrary element y ∈ Q having a reduced form of length greater than 0 is
not equal to 1.

The following proposition is a special case of Theorem 4 and will be used in its proof.
Proposition 8 [3, Theorem 4]. Let C be a root class of groups, A and B be isomorphic groups,

α : A → B be an isomorphism and ϕ = α|H . Then P is residually a C-group if and only if A and B
are residually C-groups, H is C-separable in A, and K is C-separable in B.

The next two statements follow from theorems on the structure of subgroups of generalized free
products and HNN-extensions (see, for example, [21, Theorems 3, 4]).

Proposition 9. Every normal subgroup N of P that intersects trivially with H and K
decomposes into the free product of some free group and groups isomorphic to N ∩A or N ∩B.

Proposition 10. Every normal subgroup N of Q that intersects trivially with L and M
decomposes into the free product of some free group and groups isomorphic to N ∩C.

3. PROOF OF THEOREMS 1, 2

Throughout what follows, if Γ is a graph, G(Γ) is a corresponding graph of groups, and Δ is
a subgraph of Γ, then by G(Δ) we denote the graph of groups obtained by associating to the vertices
and edges of Δ the same groups and mappings, as in G(Γ).

Let Γ = (V,E) be an arbitrary graph and G(Γ) =
(
Γ, Gv (v ∈ V ), He, ϕ±e (e ∈ E)

)
be a cor-

responding graph of groups. It is well known (see, for example, [14, § 5.2]) that, for each v ∈ V ,
the identity map of the generators of Gv to π1(G(Γ)) defines an injective homomorphism. Therefore,
for each edge e ∈ E, the maps ϕ+e and ϕ−e can be considered as embeddings of He in π1(G(Γ)), as well
as in π1(G(Δ)), where Δ is a subgraph of Γ containing e(1) and (or) e(−1). This remark allows us
to formulate

Proposition 11. Let Γ be a tree and Γ1, Γ−1 be the connected components of the graph obtained
from Γ by removing some edge e ∈ E. Then the groups π1(G(Γ1)) and π1(G(Γ−1)) are embedded
in π1(G(Γ)) by the identity mapping of the generators, and the group π1(G(Γ)) decomposes
into the free product of the groups π1(G(Γ1)) and π1(G(Γ−1)) with the subgroups H+e and H−e

amalgamated according to the isomorphism ϕ−1
+eϕ−e : H+e → H−e.

Proof. Let P denote the free product of the groups π1(G(Γ1)) and π1(G(Γ−1)) with the subgroups
H+e and H−e amalgamated according to the isomorphism ϕ−1

+eϕ−e : H+e → H−e. ThenP and π1(G(Γ))
have the same sets of generators and, as is easy to see, any defining relation of P is derived from the defin-
ing relations of π1(G(Γ)). Therefore, the identity mapping of the generators of P to π1(G(Γ)) defines
an isomorphism of the first on the second.

As noted earlier, π1(G(Γ1)) and π1(G(Γ−1)) are embedded in P by the identity mapping of the gen-
erators. In view of the above, these embeddings can be continued to homomorphisms into π1(G(Γ)).
�

Similarly, we can prove
Proposition 12. Let Γ be an arbitrary graph, E′ be a set of edges that do not belong

to a fixed maximal forest F of Γ and Δ be a graph obtained from Γ by removing all the edges
of E′. Then the group π1(G(Δ)) is embedded in π1(G(Γ)) by the identity mapping of the gener-
ators, and π1(G(Γ)) is the HNN-extension of π1(G(Δ)) with the set of stable letters {te|e ∈ E′}
and the pairs of subgroups (H+e,H−e) associated by the isomorphisms ϕ−1

+eϕ−e : H+e → H−e

(e ∈ E′). In particular, π1(G(Γ)) is an HNN-extension of the tree product π1(G(F )).
Proposition 13. Let Γ = (V,E) be a finite graph, G(Γ) =

(
Γ, Gv (v ∈ V ), He, ϕ±e (e ∈ E)

)

be a corresponding graph of groups and N be a normal subgroup of π1(G(Γ)) intersecting
trivially with each subgroup Hεe (e ∈ E, ε = ±1). Then N is the free product of some free group
and groups, each of which is isomorphic to a subgroup of the form N ∩Gv (v ∈ V ).

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 41 No. 2 2020



TO THE QUESTION OF THE ROOT-CLASS RESIDUALITY 265

Proof. We suppose first that Γ is a forest and use induction on the number n of its edges. Without
loss of generality, we can assume that Γ is a tree (if this is not so, we add the missing edges and associate
to them unit groups and obvious homomorphisms). Therefore, if n = 0, then Γ contains only one vertex,
and the statement of the proposition is trivial.

Let n > 0, e be some edge of Γ and Γ1, Γ−1 be the connected components of the graph obtained
from Γ by removing the edge e. Then, by Proposition 11, π1(G(Γ)) is a free product of the groups
π1(G(Γ1)) and π1(G(Γ−1)) with the amalgamated subgroups H+e and H−e. By Proposition 9, it
follows from the equalities N ∩H+e = 1 = N ∩H−e that N is the free product of some free group
and groups isomorphic to N ∩ π1(G(Γ1)) or N ∩ π1(G(Γ−1)). Since π1(G(Γ1)) and π1(G(Γ−1)) are
embedded in π1(G(Γ)) by the identity mappings of the generators, the subgroups N ∩ π1(G(Γ1))
and N ∩ π1(G(Γ−1)) intersect trivially with all the edge subgroups of π1(G(Γ1)) and π1(G(Γ−1))
respectively. Therefore, we can apply the inductive hypothesis to the groups π1(G(Γ1)), π1(G(Γ−1))
and their subgroups N ∩ π1(G(Γ1)), N ∩ π1(G(Γ−1)), and the required result follows.

We now consider the general case and use induction on the number m of the edges that do not
belong to some fixed maximal forest F of Γ. If m = 0, the statement has already been proved; therefore,
we assume that m > 0.

Let e be an edge of Γ that does not belong to F and Δ be the graph obtained from Γ by removing
the edge e. Then, by Proposition 12, π1(G(Γ)) is an HNN-extension of π1(G(Δ)) with the associated
subgroups H+e and H−e. By Proposition 10, N is the free product of some free group and groups iso-
morphic to N ∩ π1(G(Δ)). The subgroup N ∩ π1(G(Δ)) intersects trivially with all the edge subgroups
of π1(G(Δ)) and, by the inductive hypothesis, in turn decomposes into the free product of a free group
and groups isomorphic to some subgroups of the form N ∩Gv (v ∈ V ). Therefore, N has the required
form. �

Proof of Theorem 1. Let σ be a homomorphism of π1(G(Γ)) onto a group of C acting injectively on all
the subgroups Hεe (e ∈ E, ε = ±1). Let also Γi = (Vi, Ei) (i ∈ I) be all the connected components
of Γ. It is easy to see that π1(G(Γ)) is the free product of the groups π1(G(Γi)) (i ∈ I). We put
Ni = kerσ ∩ π1(G(Γi)) for every i ∈ I . Then, for any i ∈ I , Ni intersects trivially with all the edge
subgroups of π1(G(Γi)).

Since Γ has a finite number of edges, all Γi (i ∈ I) are finite. Therefore, by Proposition 13, for every
i ∈ I , Ni is the free product of some free group and groups, each of which is isomorphic to a subgroup
of the form Ni ∩Gv (v ∈ Vi). The class C is closed under taking subgroups; therefore, for any vertex
v ∈ Vi, the subgroup Ni ∩Gv of the residually C-group Gv is also residually a C-group. As it is follows
from Proposition 5, any free group is residually a C-group. Therefore, for each i ∈ I , π1(G(Γi)) is
an extension of the free product Ni of residually C-groups by the C-group π1(G(Γi))σ and hence is
residually a C-group by Proposition 5. The same proposition claims that π1(G(Γ)), the free product
of π1(G(Γi)) (i ∈ I), is also residually a C-group. �

Proof of Theorem 2. Suppose first that all the subgroups Hεe (e ∈ E, ε = ±1) are finite. We use
the fact that π1(G(Γ)) is residually a C-group and, for each element s of the set S =

⋃
e∈E, ε=±1Hεe \

{1}, find a subgroupNs ∈ C∗(π1(G(Γ))), which does not contain s. Since Γ has a finite number of edges,
S is also finite and, by Proposition 3, the subgroup N =

⋂
s∈S Ns belongs to the family C∗(π1(G(Γ))).

Therefore, the natural homomorphism of π1(G(Γ)) onto the quotient group π1(G(Γ))/N is the desired
one.

Now let all the subgroups Hεe (e ∈ E, ε = ±1) be of finite Hirsch–Zaitsev rank. The class of all
torsion-free C-groups, as well as the class C, is closed under taking subgroups and direct products
of finitely many factors. Therefore, by Proposition 4, for any e ∈ E, ε = ±1, there exists a subgroup
Nεe ∈ C∗(π1(G(Γ))) that intersects trivially with Hεe. As above, we use the finiteness of the number
of edges of Γ and conclude that the desired mapping is the natural homomorphism of the group
π1(G(Γ)) onto its quotient group by the subgroup

⋂
e∈E, ε=±1Nεe, which belongs to C∗(π1(G(Γ)))

by Proposition 3. �
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4. PROOF OF THEOREM 4

Proposition 14. Let C be a root class of groups, Γ = (V,E) be a finite graph and G(Γ) =(
Γ, Gv (v ∈ V ), He, ϕ±e (e ∈ E), αv,w (v,w ∈ V )

)
be a corresponding graph of isomorphic groups.

If all Gv (v ∈ V ) belong to C, then π1(G(Γ)) is residually a C-group.
Proof. Let us fix some maximal forest F of Γ and a vertex v ∈ V . We define a map σ0 of the generators

of π1(G(Γ)) to Gv as follows: if x is a generator of Gw, then xσ0 = xαw,v; if e ∈ E is an edge that does
not belong to F , then teσ0 = 1. Denote by σ the continuation of σ0 to the mapping of words.

Let e ∈ E and h ∈ He. Since ϕ+eαe(1),e(−1) = ϕ−e and αe(1),e(−1)αe(−1),v = αe(1),v, then

hϕ+eσ = hϕ+eαe(1),v = hϕ+eαe(1),e(−1)αe(−1),v = hϕ−eαe(−1),v = hϕ−eσ.

Therefore, σ maps all the defining relations of π1(G(Γ)) into the equalities valid in Gv and hence
determines a homomorphism of the first to the second. Being a continuation of the isomorphisms αw,v

(w ∈ V ), σ acts injectively on all the vertex groups. Thus, π1(G(Γ)) is residually a C-group by virtue
of Theorem 1. �

Let Γ = (V,E) be an arbitrary graph and G(Γ) =
(
Γ, Gv (v ∈ V ), He, ϕ±e (e ∈ E)

)
be a corre-

sponding graph of groups. Suppose also that in each group Gv (v ∈ V ), we fix a normal subgroup Rv

and, for each edge e ∈ E, there exists a normal subgroup Se of He such that Seϕεe = Re(ε) ∩Hεe

(ε = ±1). Then the set R = {Rv |v ∈ V } will be called the system of compatible normal subgroups
of the groups Gv (v ∈ V ).

It is easy to verify that if R = {Rv |v ∈ V } is a system of compatible normal subgroups, then
for any e ∈ E, ε = ±1 the map ϕεe : He/Se → Ge(ε)/Re(ε) taking the coset hSe (h ∈ He) to the coset
(hϕεe)Re(ε) is well defined and is an injective homomorphism. Therefore, we can consider the graph
of groups GR(Γ), in which the vertices are associated with the groups Gv/Rv and the edges are
associated with the groups He/Se and the homomorphisms ϕεe defined above.

It is easy to see that if some maximal forest of Γ is fixed, then the presentation of π1(GR(Γ)) can be
obtained from the presentation of π1(G(Γ)) by adding to the last, for every v ∈ V , all possible relations
of the form r = 1, where r is a word in the generators of Gv defining an element of Rv. Therefore,
π1(GR(Γ)) is a quotient group of π1(G(Γ)) by the normal closure of the set of elements

⋃
v∈V Rv.

The natural homomorphism of π1(G(Γ)) onto π1(GR(Γ)) we denote by ρR.

Now let G(Γ) =
(
Γ, Gv (v ∈ V ), He, ϕ±e (e ∈ E), αv,w (v,w ∈ V )

)
be a graph of isomorphic

groups and R = {Rv|v ∈ V } be a system of normal subgroups ofGv (v ∈ V ) such that, for any v,w ∈ V ,
the equality Rw = Rvαv,w holds. Then it follows easily from the relations αe(ε),e(−ε)|Hεe

= ϕ−1
εe ϕ−εe,

valid for all e ∈ E, ε = ±1, that R is a system of compatible normal subgroups. Below we call such sets
of subgroups the systems of isomorphic compatible normal subgroups.

Obviously, if R1 = {Rv,1|v ∈ V } and R2 = {Rv,2|v ∈ V } are two systems of isomorphic compatible
normal subgroups, then the set R = {Rv,1 ∩Rv,2|v ∈ V } is also a system of isomorphic compatible
normal subgroups. We also note that if R1 and R2 are systems of isomorphic compatible co-C-
subgroups, i. e., for each v ∈ V , Rv,1, Rv,2 ∈ C∗(Gv), then by virtue of Proposition 3, Rv,1 ∩Rv,2 ∈
C∗(Gv) for all v ∈ V , and therefore the intersection R of R1 and R2 also turns out to be a system
of isomorphic compatible co-C-subgroups.

Proposition 15. Let C be a class of groups closed under taking subgroups and direct products
of a finite number of factors, Γ = (V,E) be a finite graph, G(Γ) =

(
Γ, Gv (v ∈ V ), He, ϕ±e

(e ∈ E), αv,w (v,w ∈ V )
)

be a corresponding graph of isomorphic groups and, for any e ∈ E,
ε = ±1, Hεe be C-separable in Ge(ε). Then the following statements take place.

1. For any vertex u ∈ V , any C-separable subgroup Lu of Gu and any element g ∈ π1(G(Γ)) \ Lu,
there exists a system R = {Rv|v ∈ V } of isomorphic compatible co-C-subgroups of Gv (v ∈ V ) such
that gρR /∈ LuρR.

2. If all Gv (v ∈ V ) are residually C-groups, then π1(G(Γ)) is also residually a C-group.
Proof. 1. We suppose first that Γ is a forest and use induction on the number n of its edges.

As in the proof of Proposition 13, we can assume that Γ is a tree. Therefore, if n = 0, then Γ contains
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only one vertex u and the existence of the subgroup Ru ∈ C∗(Gu) satisfying the condition gRu /∈ LuRu

follows from the C-separability of Lu in Gu.
Now let n > 0; e ∈ E be some edge of Γ; Γ1 = (V1, E1), Γ−1 = (V−1, E−1) be the connected

components of the graph obtained from Γ by removing the edge e and e(1) ∈ V1, e(−1) ∈ V−1.
Then, by Proposition 11, π1(G(Γ)) is a free product of the groups π1(G(Γ1)) and π1(G(Γ−1)) with
the amalgamated subgroups H+e and H−e. For definiteness, we assume that u ∈ V1, and consider
two cases.

Case 1. g ∈ π1(G(Γ1)).
By the inductive hypothesis, there exists a system R1 = {Rv|v ∈ V1} of isomorphic compatible co-C-

subgroups of Gv (v ∈ V1) such that gρR1 /∈ LuρR1 . We use the isomorphisms αv,w (v,w ∈ V ) to extend
R1 to a system R of isomorphic compatible co-C-subgroups of Gv (v ∈ V ).

The group π1(GR(Γ)) is a generalized free product of π1(GR(Γ1)) and π1(GR(Γ−1)). The homo-
morphism ρR maps the subgroup π1(G(Γ1)) onto π1(GR(Γ1)) = π1(GR1(Γ1)) and acts on its elements
as ρR1 . Therefore, it follows from the relation gρR1 /∈ LuρR1 that gρR /∈ LuρR. Thus, R is the desired
system.

Case 2. g /∈ π1(G(Γ1)).
Let g = g1g2 . . . gl be a reduced form of g considered as an element of the generalized free product

of the groups π1(G(Γ1)) and π1(G(Γ−1)). Then, for any i ∈ {1, . . . , l}, there exists εi = ±1 such that
gi ∈ π1(G(Γεi)) \Hεie, and if l = 1, then ε1 = −1.

For each i ∈ {1, . . . , l}, we apply the inductive hypothesis to the group π1(G(Γεi)), the subgroupHεie

and the element gi. As a result, we obtain a system Ri of isomorphic compatible co-C-subgroups
of Gv (v ∈ Vεi). As above, we extend each of Ri to a system Ri of isomorphic compatible co-C-
subgroups of Gv (v ∈ V ) and denote by R the intersection of Ri (1 � i � l). Then R = {Rv|v ∈ V }
is a system of isomorphic compatible co-C-subgroups of Gv (v ∈ V ). Put R1 = {Rv ∈ R|v ∈ V1}
and R−1 = {Rv ∈ R|v ∈ V−1}.

Let i ∈ {1, . . . , l}. Since
⋃

R∈Rεi
R ⊆

⋃
R∈Ri

R, then ker ρRεi
� ker ρRi and the relation giρRi /∈

HεieρRi implies giρRεi
/∈ HεieρRεi

. As in case 1, we obtain from the latter that giρR /∈ HεieρR.
Therefore, gρR has in π1(GR(Γ)) a reduced form of length l, and if l = 1, then gρR ∈ π1(GR(Γ−1)) \
H−eρR. It follows that gρR /∈ π1(GR(Γ1)) and, in particular, gρR /∈ LuρR.

Thus, if Γ is a forest, the proposition is proved. We now consider the general situation and use
induction on the number m of the edges that do not belong to some fixed maximal forest F of Γ, or, what
is the same, on the number of the stable letters in the presentation of π1(G(Γ)) corresponding to F .

If m = 0, then Γ is a forest and the required statement has already been proved. Let m > 0, e ∈ E
be some edge that does not belong to F and Δ = (V,EΔ) be the graph obtained from Γ by removing
the edge e. Then, by Proposition 11, π1(G(Γ)) is an HNN-extension of the group π1(G(Δ)) with
the stable letter te and the associated subgroups H+e and H−e. Again, consider two cases.

Case 1. g ∈ π1(G(Δ)).
We apply the inductive hypothesis to the group π1(G(Δ)) and find a system S of isomorphic com-

patible co-C-subgroups of Gv (v ∈ V ) such that gρS /∈ LuρS (where ρS is the natural homomorphism
of π1(G(Δ)) onto π1(GS(Δ))). Obviously, the set S can be considered as a system R of isomorphic
compatible co-C-subgroups of the vertex groups of G(Γ), and π1(GR(Γ)) is an HNN-extension
of π1(GS(Δ)). The natural homomorphism ρR of π1(G(Γ)) onto π1(GR(Γ)) acts on the subgroup
π1(G(Δ)) in the same way as ρS and maps it onto the subgroup π1(GR(Δ)). Therefore, it follows
from the relation gρS /∈ LuρS that gρR /∈ LuρR.

Case 2. g /∈ π1(G(Δ)).

Let g = g0t
δ1
e g1 . . . t

δl
e gl be a reduced form of g in the HNN-extension π1(G(Γ)) of π1(G(Δ)). Since

g /∈ π1(G(Δ)), then l � 1.
If i ∈ {1, . . . , l − 1} and there exists εi = ±1 such that −εiδi = 1 = εiδi+1, then gi /∈ Hεie and we

can apply the inductive hypothesis to the group π1(G(Δ)), the subgroup Hεie and the element gi.
As a result, we obtain a system Ri of isomorphic compatible co-C-subgroups of Gv (v ∈ V ) such that
giρRi /∈ HεieρRi . Moreover, as in case 1, Ri and ρRi can be considered as a system of subgroups
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of the vertex groups of G(Γ) and a homomorphism of π1(G(Γ)). If i ∈ {0, l} or the number εi with
the above properties does not exist, we put Ri = {Gv |v ∈ V }. Then the intersection R = {Rv|v ∈ V }
of Ri (0 � i � l) is also a system of isomorphic compatible co-C-subgroups of Gv (v ∈ V ).

By Proposition 12, π1(GR(Γ)) is an HNN-extension of π1(GR(Δ)). Since
⋃

R∈R R ⊆
⋃

R∈Ri
R

for any i ∈ {0, . . . , l}, then ker ρR � ker ρRi and the relation giρRi /∈ HεieρRi implies giρR /∈ HεieρR.
Therefore, in the indicated HNN-extension, the product (g0ρR)t

δ1
e (g1ρR) . . . t

δl
e (glρR) serves as a re-

duced form of the element gρR of length l � 1, and hence gρR /∈ π1(GR(Δ)). This means, in particular,
that gρR /∈ LuρR. Thus, R is the desired system.

2. Let g ∈ π1(G(Γ)) \ {1} be an arbitrary element. Since all Gv (v ∈ V ) are residually C-groups,
then the identity subgroup of every group Gv (v ∈ V ) is C-separable in this group. Choose some vertex
w ∈ V and apply statement 1 of the proposition to the group π1(G(Γ)), the identity subgroup of Gw

and the element g. As a result, we find a system R = {Rv|v ∈ V } of isomorphic compatible co-C-
subgroups of Gv (v ∈ V ) such that gρR �= 1.

It is easy to see that GR(Γ) is a graph of isomorphic C-groups. Therefore, by Proposition 14,
π1(GR(Γ)) is residually a C-group and hence ρR can be continued to a homomorphism of π1(G(Γ))
onto a group of C mapping g to a nonidentity element. �

Proof of Theorem 4. Necessity. Since C is closed under taking subgroups, any subgroup
of a residually C-group is also residually a C-group. Therefore, all Gv (v ∈ V ) are residually C-groups.
We show that, for any e ∈ E, ε = ±1, Hεe is C-separable in Ge(ε).

First, let the edge e ∈ E be a loop, i. e., e(1) = e(−1). Then ϕ−1
+eϕ−e = αe(1),e(−1)|H+e

= idGe(1)
|H+e

and hence ϕ+e = ϕ−e, H+e = H−e. In addition, e cannot belong to any maximal forest of Γ; therefore,
every presentation of π1(G(Γ)) has a stable letter te corresponding to e.

Suppose that H+e is not C-separable in Ge(1). Then there exists an element x ∈ Ge(1) \H+e

such that xθ ∈ H+eθ for every homomorphism θ of Ge(1) onto a group of C. Consider the element
g = t−1

e xtex
−1.

According to Proposition 12, π1(G(Γ)) is an HNN-extension of π1(G(Δ)), where Δ is the graph
obtained from Γ by removing the edge e. Since x ∈ Ge(1) \H+e, the element g in this HNN-extension
has a reduced form of nonzero length and therefore differs from 1. However, if σ is an arbitrary
homomorphism of π1(G(Γ)) onto a group of C, then its restriction to Ge(1) is also a homomorphism
of the latter onto a group of C. Therefore, x ≡ hϕ+e (mod ker σ) for some h ∈ He, and

g ≡ t−1
e (hϕ+e)te(hϕ+e)

−1 = (hϕ−e)(hϕ+e)
−1 = (hϕ+e)(hϕ+e)

−1 = 1 (mod ker σ)

what contradicts the fact that π1(G(Γ)) is residually a C-group.
Now suppose that the edge e ∈ E is not a loop. Choose a maximal forest F of Γ so that it contains e.

Then, according to Theorem 1 from [22], the free product P of the groups Ge(1) and Ge(−1) with
the subgroups H+e and H−e amalgamated according to the isomorphism ϕ−1

+eϕ−e turns out to be
a subgroup of π1(G(F )), which, in turn, embeds in π1(G(Γ)). It follows that P is residually a C-group,
and therefore the C-separability of H+e in Ge(1) and H−e in Ge(−1) follows from Proposition 8.

Sufficiency. We fix some maximal forest F of Γ and the corresponding presentation of π1(G(Γ)).
The same considerations as in the proof of Proposition 13 allow us to assume that the graph Γ is
connected and therefore its maximal forest F is a tree.

Let g ∈ π1(G(Γ)) be an arbitrary nonidentity element, ω be some word in the generators of π1(G(Γ))
defining it and S be a finite subset of vertices of Γ defined as follows:

a) if ω includes a generator of some group Gv, then v ∈ S;
b) if ω includes the stable letter te corresponding to some edge e ∈ E, then e(1), e(−1) ∈ S;
c) there are no other vertices in S.
Let Γ1 = (W,E1) be the smallest subtree of F containing all the vertices from S, Γ2 = (W,E2)

be the subgraph of Γ obtained from Γ1 by adding each edge e ∈ E such that the stable letter te
is contained in ω. Let also Γ3 = (W,E3) be the graph obtained from Γ2 by adding to it, for any,
not necessarily different vertices u, v ∈ W , two new edges e1 and e2 such that e1(1) = u = e2(−1)
and e1(−1) = v = e2(1).
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It is clear that the graph Γ3 is finite. We turn it into a graph of groups G(Γ3) by associating
to the vertices of W and the edges of E2 the same groups and homomorphisms as in the graph Γ, and to
each edge e ∈ E3 \ E2 the group Ge(1) and the maps ϕ+e = idGe(1)

, ϕ−e = αe(1),e(−1). It is easy to see
that G(Γ3) is a graph of isomorphic groups satisfying the conditions of Proposition 15, and therefore
π1(G(Γ3)) is residually a C-group.

We choose Γ1 as a maximal tree of Γ2 and Γ3 and fix the corresponding presentations of π1(G(Γ2))
and π1(G(Γ3)). Then π1(G(Γ2)) has the same presentation as π1(G(Γ2)), and π1(G(Γ3)), according
to Proposition 12, is an HNN-extension of π1(G(Γ2)) with the set of stable letters {te|e ∈ E3 \ E2}.

Since π1(G(Γ2)) includes all the generators from the word ω, the latter defines some element g of this
group. Suppose g = 1. Then there is a sequence of insertions and deletions of the defining relations
of π1(G(Γ2)) and words trivially equal to one that transforms ω to an empty word. Since all the defining
relations of π1(G(Γ2)) are also present in π1(G(Γ)), it turns out that the equality g = 1 holds what
contradicts the choice of g. Thus, g �= 1.

Since π1(G(Γ3)) is an HNN-extension of π1(G(Γ2)), then ω also defines a nonidentity element of it.
Therefore, to complete the proof of the theorem, it remains to construct a homomorphism of π1(G(Γ))
to π1(G(Γ3)) acting identically on the generators of π1(G(Γ2)), of which, in particular, ω is composed.
Since, as proved above, π1(G(Γ3)) is residually a C-group, this homomorphism can be continued
to a homomorphism of π1(G(Γ)) onto a group of C mapping g to a nonidentity element.

If v ∈ V , we call the length of the shortest path in the tree F connecting v with some vertex of W
the distance from the vertex v to the graph Γ1. It is well known that any two vertices of a tree are
connected by a single simple path. This easily implies that if the distance from v to Γ1 is equal to d, then
there exists exactly one vertex w ∈ W such that v and w are connected by a path of length d; we call
it the vertex of W nearest to v. It follows also from the uniqueness of a simple path connecting two
vertices that if e is an edge of F that does not belong to Γ1, then one and the same vertex of W is nearest
to e(1) and e(−1).

Suppose that a map δ : V → W associates a vertex v ∈ V with the nearest to it vertex of W . Define
a map σ0 of the generators of π1(G(Γ)) to π1(G(Γ3)) as follows. If x is a generator of some group Gv

(v ∈ V ), then xσ0 = xαv,δ(v). Let e be an edge of Γ that does not belong to F . If e ∈ E2, then
teσ0 = te. If e /∈ E2, then teσ0 = te, where e is an edge from the set E3 \ E2 for which e(1) = δ(e(1))
and e(−1) = δ(e(−1)). We continue σ0 to the mapping of words σ and show that it maps all the defining
relations of π1(G(Γ)) into the equalities valid in π1(G(Γ3)).

By definition, σ acts identically on the generators of π1(G(Γ2)) and continues the isomor-
phisms αv,δ(v) for all v ∈ V . Therefore, it maps into the valid equalities all the defining relations
of the groups Gv (v ∈ V ) and all the defining relations of π1(G(Γ)) corresponding to the edges of E2.

Let e ∈ E \ E2. If e is an edge of F , then, as noted above, δ(e(1)) = δ(e(−1)). Since
αe(1),e(−1)αe(−1),δ(e(1)) = αe(1),δ(e(1)) and ϕ+eαe(1),e(−1) = ϕ−e, then, for each element h ∈ He,

(hϕ+e)σ = (hϕ+e)αe(1),δ(e(1)) = (hϕ+e)αe(1),e(−1)αe(−1),δ(e(1))

= (hϕ−e)αe(−1),δ(e(1)) = (hϕ−e)αe(−1),δ(e(−1)) = (hϕ−e)σ.

Let e do not belong to F and e be the edge of E3 \ E2 such that teσ = te and hence e(1) = δ(e(1)),
e(−1) = δ(e(−1)). Then the equalities t−1

e
xt

e
= xα

e(1),e(−1) = xαδ(e(1)),δ(e(−1)) hold in π1(G(Γ3))

for every x ∈ Gδ(e(1)). Since ϕ+eαe(1),e(−1) = ϕ−e and αe(1),δ(e(1))αδ(e(1)),δ(e(−1)) = αe(1),δ(e(−1)) =

αe(1),e(−1)αe(−1),δ(e(−1)), we have

(t−1
e hϕ+ete)σ = t−1

e
(hϕ+e)αe(1),δ(e(1))te = (hϕ+e)αe(1),δ(e(1))αδ(e(1)),δ(e(−1))

= (hϕ+e)αe(1),e(−1)αe(−1),δ(e(−1)) = (hϕ−e)αe(−1),δ(e(−1)) = (hϕ−e)σ.

Thus, σ defines a homomorphism of π1(G(Γ)) to π1(G(Γ3)) acting identically on the generators
of π1(G(Γ2)). �
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5. PROOF OF THEOREM 3

Proposition 16. Let C be a root class of groups containing a group G whose cardinality is not
less than the cardinality of some (absolutely) free group F that does not belong to C. Then there
exist a group X and its subgroup Y such that:

1) X is residually a C-group;
2) Y belongs to C;
3) Y is C-separable in X;
4) the kernel of any homomorphism of X onto a group of C intersects Y nontrivially.
Proof. Suppose first that C consists only of periodic groups. Then, due to its closeness under taking

subgroups and extensions, it contains all cyclic groups whose orders are the powers of some prime p.

Let, for each i � 1, Cpi be a cyclic group of order pi. Denote by X the direct product of Cpi

(i � 1) and by Y the product of the subgroups (Cpi)
pi−1

. Then X is residually a C-group according
to Proposition 5. The subgroup Y is the direct product of a countable number of groups of order p
and, since G is obviously infinite, embeds in the Cartesian product

∏
g∈GCp(g), where Cp(g) is

an isomorphic copy of Cp for each g ∈ G. The indicated Cartesian product belongs to C by virtue
of Proposition 1. Therefore, Y is also contained in C.

Note that Y is normal in X and X/Y ∼= X. Therefore, if x ∈ X \ Y is an arbitrary element, then
xY is a nonidentity element of the residually C-group X/Y . It follows that the natural homomorphism
X → X/Y can be continued to a homomorphism σ of X onto a group of C such that xσ �= 1 = Y σ.
Thus, Y is C-separable in X.

Finally, suppose that there exists a homomorphism of X onto some group Z ∈ C injective on Y . Then
it must be injective on each subgroup Cpi (i � 1), and therefore Z contains elements of arbitrarily large
order.

On the other hand, according to Proposition 1, the Cartesian product P =
∏

z∈Z Zz , where Zz is
an isomorphic copy of Z for each z ∈ Z, also belongs to C and hence is a periodic group. This means
that the element of P , the function f : Z → Z defined by the rule f(z) = z, has some finite order q.
Obviously, by the definition of f , the period of Z coincides with q and, in particular, is finite, contrary
to what was established above. Therefore, a homomorphism with the indicated properties does not exist.

Thus, in the case when C consists of periodic groups, the proposition is proved.
Now suppose that C contains at least one non-periodic group and X is the direct wreath product

of the free group F with the C-group G. Recall how this construction is defined.
Let D be the direct product of isomorphic copies of F indexed by the elements of G, i. e., the set

of all functions from G to F having nonidentity values only at a finite number of points with pointwise
multiplication. Then X is the extension of D by G, in which conjugation by an element g ∈ G maps
a function d ∈ D to the function dg defined as follows: dg(x) = d(gx), x ∈ G.

Since the cardinality of F does not exceed the cardinality of G, there exists an injective map β
of the first to the second. For each element g ∈ G, we define a function dg ∈ D as follows: if there
exists an element f ∈ F such that β(f) = g, then

dg(x) =

{
f, if x = g,

1, if x �= g;

otherwise dg = 1. Denote by Y the subgroup of D generated by all the elements dg (g ∈ G).
By Proposition 5, F , D, and X are residually C-groups. It is easy to see that Y is the direct product

of cyclic subgroups generated by the elements dg (g ∈ G). Since D is torsion-free, Y is a free Abelian
group and therefore embeds in the Cartesian product P =

∏
g∈G Z(g), where Z(g) is an infinite cyclic

group for each g ∈ G. Since C contains a non-periodic group and is closed under taking subgroups,
it also includes an infinite cyclic group. Therefore, by Proposition 1, the group P together with its
subgroup Y belong to C.

Let us show that Y is C-separable in X. To do this, we fix an arbitrary element x ∈ X \ Y and indicate
a homomorphism σ of X onto a group of C such that xσ /∈ Y σ.
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If x /∈ D, the desired one is the natural homomorphism of X onto the quotient group X/D,
isomorphic to the C-group G. Let x ∈ D. Since x /∈ Y , then there exists an element h ∈ G such that
x(h) does not belong to the cyclic subgroup 〈dh(h)〉 � F generated by dh(h).

The class of all torsion-free C-groups is nontrivial (it contains, for example, an infinite cyclic group)
and hence is root as the intersection of C and the root class of all torsion-free groups. Therefore, accord-
ing to Proposition 5, F is residually a torsion-free C-group, and, by Proposition 4, the subgroup 〈dh(h)〉
is C-separable in F .

Let N ∈ C∗(F ) be such a subgroup that x(h) /∈ 〈dh(h)〉N and X be the direct wreath product
of F = F/N with G. It is easy to show that the function that maps the product gd (g ∈ G, d ∈ D)
to the product gd, where d is the function from G to F given by the rule d(x) = d(x)N , defines
a homomorphism σ of X onto X . The image of Y under this homomorphism is still the direct
product of the subgroups generated by the elements dg (g ∈ G). Therefore, it follows from the relations
x(h) = x(h)N /∈ 〈dh(h)〉N/N = 〈dh(h)〉 that xσ /∈ Y σ.

It remains to note that, by Proposition 1, the Cartesian wreath product of the C-group F with the C-
group G is, in turn, a C-group. Since the direct wreath product is a subgroup of the Cartesian one, it
follows that X ∈ C. Thus, Y is C-separable in X.

Suppose now that some homomorphism σ of X onto a group of C acts injectively on Y . Then
dg /∈ kerσ for any g ∈ G such that dg �= 1.

For each f ∈ F , we denote by ḟ the element of D defined as follows:

ḟ(x) =

{
f, if x = 1,

1, if x �= 1.

It is easy to see that the set of functions Ḟ = {ḟ |f ∈ F} is a subgroup and the map f → ḟ defines
an isomorphism of F onto Ḟ .

Let f ∈ F \ {1} and g = β(f). Then dg = gḟg−1, and hence ḟ /∈ ker σ. Therefore, Ḟ embeds
in the C-group Xσ and hence is contained in C. But this is impossible, since, by the condition
of the proposition, F /∈ C.

Thus, the kernel of any homomorphism of X onto a group of C intersects Y nontrivially. �

The following statement is a strengthened form of Theorem 3.
Proposition 17. Let C be a root class of groups containing a group G whose cardinality

is not less than the cardinality of some (absolutely) free group F that does not belong to C.
Then, for any graph Γ = (V,E), there exists a corresponding graph of groups G(Γ) =

(
Γ, Gv (v ∈

V ), He, ϕ±e (e ∈ E)
)

such that:
1) all Gv (v ∈ V ) are residually C-groups;
2) all Hεe (e ∈ E, ε = ±1) belong to C;
3) π1(G(Γ)) is residually a C-group;
4) for any homomorphism σ of π1(G(Γ)) onto a group of C and for any e ∈ E, ε = ±1,

the relation ker σ ∩Hεe �= 1 holds.
Proof. This statement follows from Proposition 16 and Theorem 4. If X and Y are the group

and the subgroup from Proposition 16, then we should take X, Y and the natural embeddings of Y
in X as the groups Gv (v ∈ V ), He (e ∈ E) and the maps ϕεe (e ∈ E, ε = ±1) respectively. In this case,
the statements 1, 2, and 4 follow from Proposition 16, and the statement 3 does from Theorem 4. �

Proof of Theorem 3. A free group of no more than countable rank is countable, and therefore its
cardinality is not greater than the cardinality of any infinite group belonging to the class C. Thus,
the indicated class satisfies the condition of Proposition 17, from which the desired result follows. �

6. FINAL REMARKS
We continue to the discussion of Theorem 3 and note that the vertex groups of the graph

of groups G(Γ) constructed during its proof are residually C-groups, but do not belong to C. The authors
do not know whether this theorem will remain true if we change the statement 1 of it as follows: Gv ∈ C
for all v ∈ V .
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