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Abstract—The concept of residual finiteness with respect to automorphic equivalence, a property
generalizing residual finiteness and conjugacy separability is introduced. A sufficient condition for
a group G to be residually finite with respect to automorphic equivalence is proven (Theorem). It is
then used to give some examples of automorphic equivalent residually finite groups.
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1. INTRODUCTION

A group G is residually finite if, for any element g �= 1 in G, there exists a normal subgroup N of
finite index in G such that gN �= 1 in the quotient group G = G/N .

A well-known generalization of residual finiteness is conjugacy separability.

A group G is conjugacy separable if, for any two nonconjugate elements f and g of G, there exists a
normal subgroup N of finite index in G such that elements fN and gN are nonconjugate in the quotient
group G = G/N . It is evident that, if a group G is conjugacy separable, then it is residually finite.

Some other residual properties generalizing residual finiteness are considered in [2, 4].

In this paper, we introduce the concept of residual finiteness with respect to automorphic equivalence.
We see that this concept generalizes residual finiteness and conjugacy separability. We prove a sufficient
condition for a group to be residually finite with respect to some automorphic equivalence, namely:

Theorem Let a subgroup Φ of Aut G, the group of the automorphisms of a given group G,
contain a group Inn G of the inner automorphisms of this group, and let Inn G have a finite index
in group Φ. If group G is finitely generated and conjugacy separable, then G is Φ-equivalent
residually finite.

We then use this theorem to give some examples of automorphic equivalent residually finite groups.
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2. DEFINITION

Let G be an arbitrary group and let ϕ be an automorphism of G.

We remind the reader that a normal subgroup N of group G is said to be ϕ-invariant if Nϕ = N . If
N is a ϕ-invariant normal subgroup of group G, then the mapping ϕ of the quotient group G/N onto
itself defined by

(gN)ϕ = (gϕ)N (g ∈ G)

is an automorphism of group G/N . This automorphism is called the automorphism induced by ϕ.

Let Φ be a subgroup of the group Aut G of all automorphisms of G.

A normal subgroup N of group G is said to be Φ-invariant if it is ϕ-invariant for any automorphism
ϕ ∈ Φ.

If N now is a Φ-invariant normal subgroup of the group G, then we denote by Φ the subgroup of the
group Aut(G/N) of all automorphisms of the group G/N induced by the automorphisms of Φ.

Let G be a group and Φ � Aut G. Elements a and b of group G are said to be Φ-equivalent if there
exists an automorphism ϕ ∈ Φ such that a = bϕ.

Let us now formulate our main concept.

Let G be an arbitrary group. Let Φ be a subgroup of the group Aut G of all the automorphisms of G.

Group G is said to be residually finite with respect to Φ-equivalence (or Φ-equivalent residually
finite) if, for any non-Φ-equivalent elements a and b of group G, there exists a normal Φ-invariant
subgroup N of finite index in G such that elements aN and bN of the quotient group G/N are not
Φ-equivalent.

It is clear that particular cases of this notion are residual finiteness (when subgroup Φ consists of only
the identical automorphism) and conjugacy separability (when Φ coincides with Inn G, the group of all
inner automorphisms of the group G).

If Φ = Aut G, then Φ-equivalent residual finiteness is just Aut G-equivalent residual finiteness, i.e.,
residual finiteness with respect to any automorphic equivalence.

We now prove the sufficient condition of Φ-equivalent residual finiteness (Theorem).

3. PROOF OF THEOREM

Let ψ1, ψ2, . . . , ψr be a fixed representative system of cosets of the subgroup InnG in group Φ.

Let a and b be non-Φ-equivalent elements of group G. Assume for i = 1, 2, . . . , r, that bi = bψi. Since
subgroup Φ contains group Inn G, element a can not be conjugate in group G to elements b1, b2, . . . , br.
Further, since group G is conjugacy separable, there exists a normal subgroup M of finite index of G
such that in the quotient group G/M element aM is not conjugate to elements b1M, b2M, . . . , brM .

It is well known that an arbitrary subgroup of finite index of a finitely generated group G contains
some characteristic subgroup that has a finite index in G. Let N be the characteristic (and consequently
the Φ-invariant) subgroup of finite index of our group G, contained in subgroup M . Then, in the quotient
group G/N , element aN is not conjugate to elements b1N , b2N , . . . , brN .

We now assert that elements aN and bN of the quotient group G/N are not Φ-equivalent. Assume
by contradiction that, for some automorphism ϕ ∈ Φ, the equality aN = (bN)ϕ takes place; i.e.,
aN = (bϕ)N . Let us write the automorphism ϕ as ϕ = ψiγ for some i ∈ {1, 2, . . . , r} and some inner
automorphism γ of group G. Then, in group G, element bϕ is conjugate to some element bi, and
consequently, in the quotient group G/N , element aN = (bϕ)N is conjugate to some element biN .
This contradicts the selection of the subgroup N . So, the theorem is proved.
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4. EXAMPLES
Now, using the above Theorem, we have
Example 1. If k = ±pe, where p is a prime integer and e ≥ 1, then the group Gk with presentation

Gk = 〈a, b; a−1ba = bk〉
is Aut Gk-equivalent residually finite.

Indeed, group Gk is conjugacy separable [5]. From [1], group Aut Gk can be described as follows:
Proposition 1. Let Gk = 〈a, b; a−1ba = bk〉, where |k| �= 1. Let k = δpe1

1 pe2
2 · · · per

r , where δ =
±1, p1, p2, . . . , pr are distinct primes and ei ≥ 1 (i = 1, . . . , r). Then the group Aut Gk has the
presentation

〈ϕ,ψ1, ψ2, . . . , ψr, τ ;ψ−1
i ϕψ = ϕpi , ψiψj = ψjψi, τ

2 = 1, τψi = ψiτ, τ
−1ϕτ = ϕ−1(i, j = 1, . . . , r)〉.

In this presentation the automorphisms are defined by
(a) aϕ = ab, bϕ = b;
(b) aψi = a, bψi = bpi (i = 1, . . . , r);
(c) aτ = a, bτ = b−1.
Now, the following proposition can be derived.
Proposition 2. Subgroup Inn Gk has a finite index in group Aut Gk if and only if k = ±pe, where

p is a prime integer and e ≥ 1.
Proof. Assume first that subgroup Inn Gk has a finite index in group Aut Gk. Then any automorphism

of Gk should have a finite order modulo Inn Gk. In particular, for some integer n > 0, the automorphism
ψn

1 should be inner; i.e., for some element g ∈ Gk , the equalities g−1ag = a and g−1bg = bpn
1 should

be satisfied. Since condition |k| �= 1 implies that ZGk
(a) = 〈a〉 (ZGk

(a) is the centralizer in group
Gk of element a), we have g = am for some integer m. So, the equality g−1bg = bpn

1 has the form
a−mbam = bpn

1 . But Gk is the HNN-extension with the base group of the infinite cycle 〈b〉 and stable
letter a. Since the left-hand side of the last equality is not reduced, |k| �= 1 and n > 0, we should have
m > 0. Consequently, using the defining relations of group Gk, this equality has the form bkm

= bpn
1 ,

which gives km = pn
1 . Hence, p1 is the unique prime divisor of k, which is required.

Conversely, let k = δpe, where δ = ±1, p is a prime number, and e > 0. By Proposition 1, for this
case, group Inn Gk is generated by the automorphisms ϕ, τ , and ψ (where ϕ and τ are defined above and
ψ1 is defined by: aψ = a, bψ = bp) and is defined by the relations

ψ−1
i ϕψ = ϕp, τ2 = 1, τψ = ψτ, τ−1ϕτ = ϕ−1.

Since aϕn = abn for any integer n and the defining relations of group Gk yield bab−1 = abk−1, it follows
that automorphism ϕk−1 is inner. But k− 1 �= 0; thus, automorphism ϕ has a finite order modulo Inn Gk.

Similarly, the equality bψn = bpn
, which is satisfied for any integer n ≥ 0, shows that if δ = 1, then

automorphism ψe is inner and if δ = −1, then automorphism ψ2e is inner.
So let f : Aut Gk −→ Aut Gk/Inn Gk be the canonical homomorphism of group Aut Gk onto the

quotient group Aut Gk/Inn Gk and let X and Y be the image by f of the subgroups generated by ϕ and
ψ, respectively. We see that

1 ≤ X ≤ Y ≤ Aut Gk/Inn Gk

is a subnormal sequence with finite cyclic factors. Thus, the factor group Aut Gk/Inn Gk is finite and
Proposition 2 is proved.

So, Gk is conjugacy separable and subgroup Inn Gk has a finite index in group Aut Gk if k = ±pe,
where p is a prime number and e ≥ 1. Thus, applying the theorem, we fond that Gk is Aut Gk-equivalent
residually finite.

Example 2. Any group with the presentation
Gmn = 〈a, b; [am, bn] = 1〉, where m > 1 and n > 1,

is Aut Gmn-equivalent residually finite.
Group Gmn is conjugacy separable [3] and Inn Gmn has a finite index in Aut Gmn [6]. So, by the

theorem, group Gmn is Aut Gmn-equivalent residually finite.
We mention here that groups of the form Gk are Baumslag–Solitar groups, which are HNN

extensions [1, 5], whereas groups of the form Gmn are free products with amalgamations [6].
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