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ON ROOT CLASS RESIDUALITY OF HNN-EXTENSIONS

DANIEL TIEUDJO

Abstract. A sufficient condition for root-class residuality of HNN-extensions with root-
class residual base group is proven; namely if G = 〈A, t; t−1Ht = K, ϕ〉 is the HNN-
extension with base group A, stable letter t and associated subgroups H and K via the
isomorphism ϕ, then G is root-class residual if group A is root-class residual and there
exists a homomorphism σ of group G onto some group of a root-class such that σ is
one-to-one on H. For the particular case when H = K and ϕ is the identity map, it is
shown that G is root-class residual if and only if A is root-class residual and subgroup H
of A is root-class separable. These results are generalized to multiple HNN-extensions.
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1. Introduction

Let K be an abstract class of groups. Suppose K contains at least a non-trivial group.
Then K is called a root-class if the following conditions are satisfied:

1. If A ∈ K and B ≤ A, then B ∈ K.
2. If A ∈ K and B ∈ K, then A×B ∈ K.
3. If 1 ≤ C ≤ B ≤ A is a subnormal sequence and A/B, B/C ∈ K, then there exists a

normal subgroup D in group A such that D ≤ C and A/D ∈ K. For more details about
root properties, see [3].

In this paper, we study root-class residuality of HNN-extensions.
We recall that a group G is root-class residual (or K-residual for a root-class K) if, for

every 1 6= g ∈ G, there exists a homomorphism ϕ of the group G onto some group X of
root-class K such that gϕ 6= 1. Equivalently, G is K-residual if, for every 1 6= g ∈ G, there
exists a normal subgroup N of G such that G/N ∈ K and g /∈ N . The most investigated
residual properties of groups are residual finiteness (i.e. finite groups residuality), p-finite
groups residuality and residual solvability (i.e. solvable groups residuality) [1,2,7,8,9]. All
these three classes of groups are root-classes. Therefore results about root-class residuality
have enough general character.

So let A be a group. Let H and K be two subgroups of A and let ϕ : H −→ K be an
isomorphism. Let

G = 〈A, t; t−1ht = ϕ(h), h ∈ H〉
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be the HNN-extension with base group A, stable letter t and associated subgroups H and
K via ϕ. We shall prove:

Theorem 1.1. Let K be a given root-class. The HNN-extension G = 〈A, t; t−1Ht = K, ϕ〉
is K-residual if the group A is K-residual and there exists a homomorphism σ of G onto
some group of root-class K such that σ is one-to-one on H.

It is evident that if H = K = 1 or if H is finite, then the above sufficient condition of
root-class residuality of group G will be necessary as well.

Another restriction permitting to obtain criteria for root-class residuality of HNN-
extension with base group A, stable letter t and associated subgroups H and K is the
equality of the associated subgroups. We prove:

Theorem 1.2. Let K be a given root-class. Let G = 〈A, t; t−1Ht = K, ϕ〉 be the HNN-
extension with base group A, stable letter t and associated subgroups H and K via ϕ such
that H = K and ϕ is the identity map on H. Then G is K-residual if and only if group
A is K-residual and subgroup H is K-separable in A.

This result generalizes for example Lemma 3.1 in [5] where analogous result is proven
for the particular case of the class of all finite p-groups.

Although HNN-extensions are basically defined with multiple stable letters and multiple
associated subgroups, mostly HNN-extensions with only one stable letter have been stud-
ied. However M. Shirvani in [10] examined residual finiteness of HNN-extensions with
multiple stable letters and associated subgroups (multiple HNN-extensions). We also
study root-class residuality of multiple HNN-extensions. We will generalize Theorems 1.1
and 1.2 above to multiple HNN-extensions.

2. Proof of Theorems 1.1–1.2

We first prove some useful results.

Proposition 2.1. Let K be a root-class. Then
1. If a group G has a subnormal sequence with factors belonging to class K, then G ∈ K.
2. If F E G, G/F ∈ K and F is K-residual, then group G is also K-residual.
3. If A E G, B E G, G/A ∈ K and G/B ∈ K, then G/(A ∩B) ∈ K.

In fact, from Property 3 of the definition of root-class, it follows that root-class is closed
under any extension. So, the first property of Proposition 2.1 is satisfied. The second and
third properties are also easily verified by the definition of root-class.

In [3] Theorem 6.2, Gruenberg states that:
free product of root-class residual groups is root-class residual if and only if every free

group is root-class residual.
It happens, and we prove that, the given necessary and sufficient condition is satisfied

for every root-class. Thus,

Proposition 2.2. Every free group is root-class residual, for every root-class.

Proof. For the proof, we remark that every root-class K contains a nontrivial cyclic
group (Property 1 of the definition of root-class). If K contains an infinite cyclic group
then, by Proposition 2.1, K contains any group possessing a subnormal sequence with
infinite cyclic factors; thus, all finitely generated nilpotent torsion-free groups belong to
class K. If K contains a finite non trivial cyclic group, then K contains group of prime
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order p and consequently, by Proposition 2.1, K contains all groups possessing a subnormal
sequence with factors of order p; hence all finite p-groups belong to K. So any root-class
contains all finitely generated nilpotent torsion-free groups or all finite p-groups, for some
prime p. But free groups are residually finitely generated torsion-free and also residually
p-finite. Therefore, free groups are K-residual, for every root-class K and this ends the
proof of Proposition 2.2.

Now, Proposition 2.3 below directly follows from Proposition 2.2 and Gruenberg’s result
formulated above.

Proposition 2.3. A free product of root-class residual groups is root-class residual.

Let’s recall the construction of HNN-extensions.
Let A be a group, H and K two subgroups of group A and let ϕ : H −→ K be an

isomorphism. Then the HNN-extension with base group A, stable letter t and associated
subgroups H and K denoted by

G = 〈A, t; t−1ht = ϕ(h), h ∈ H〉
is the group generated by all the generators of the group A and one more element t and
defined by all the relators of group A and all possible relations of form t−1ht = ϕ(h), h ∈
H.

For this construction, every element g ∈ G can be written as

(2.1) g = x0t
ε1 · · · tεrxr

where for any i = 0, 1, . . . , r element xi belongs to the subgroup A, εi = ±1 and if r > 1,
there is no consecutive subwords of type t−1xit or txjt

−1 with xi ∈ H or xj ∈ K in script
(2.1).

Such form of element g is called reduced and r – its length.

By Britton’s Lemma [see 6, p. 181], if g = x0t
ε1 · · · tεrxr is reduced and r ≥ 1, then

g 6= 1 in group G.

The HNN-extension with base group A, stable letter t and associated subgroups H and
K can also be denoted

G = 〈A, t; t−1Ht = K, ϕ〉.

We now establish Theorem 2.1 from Proposition 2.3 and H. Neumann’s theorem ([6],
p. 212):

Let K be a root-class. Let G = 〈A, t; t−1Ht = K, ϕ〉 be the HNN-extension with base
group A, stable letter t and associated subgroups H and K via ϕ. Assume that the group
A is K-residual. Suppose there exists a homomorphism σ of G onto some group of class
K, such that σ is one-to-one on H. Let us denote by N the kernel of the homomorphism
σ. Then G/N ∈ K and N ∩H = 1. By H. Neumann’s theorem ([6], p. 212) or by [4], N
is the free product of a free group F and some subgroups of group G of the form

(2.2) g−1Ag ∩N,

where g ∈ G. Since group A is K-residual, the subgroups of form (2.2) are also K-residual.
Therefore N is K-residual as a free product of K-residual groups (Proposition 2.3), since
free group F is K-residual (Proposition 2.2). Moreover, since G/N ∈ K, then by Property
2 of Proposition 2.1, it follows that G is K-residual and Theorem 1.1 is proven.

We also see that, if A = H = K, then A is a normal subgroup of G and G/A ∼= 〈t〉.
Therefore G is an extension of a group of class K by a free group; and thus is K-residual.
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We now prove Theorem 1.2.

We first recall that a subgroup H of a group A is root-class separable (or K-separable
for a root-class K) if, for any element a of A, where a /∈ H, there exists a homomorphism
ϕ of group A onto some group X of root-class K such that aϕ /∈ Hϕ. This means that, for
any a ∈ A \H, there exists a normal subgroup N of A such that A/N ∈ K and a /∈ NH.

So let K be a root-class. Let G = 〈A, t; t−1Ht = K, ϕ〉 be the HNN-extension with
base group A, stable letter t and associated subgroups H and K such that H = K and
ϕ is the identity map on H. For any normal subgroup N of group A one can define the
HNN-extension

GN = 〈A/N, t; t−1HN/Nt = HN/N, ϕN〉
where ϕN is the identity map on subgroup HN/N of group GN , and the homomorphism
ρN : G −→ GN , extending the canonical homomorphism A −→ A/N and t 7−→ t.
Consider the homomorphism σ : GN −→ A which is the identity map on A, and maps
t 7−→ 1. Then kerσ = 〈t〉GN is free by [6], Theorem 6.6. So, GN/〈t〉GN ∼= A/N and GN

is an extension of a free group by group A/N . Therefore, if A/N belongs to root-class K
then, GN is K-residual. Thus, to prove K-residuality of G, it is enough to show that G is
residually a group of kind GN , where A/N ∈ K.

Suppose the group A is K-residual and the subgroup H is K-separable in A. Let
1 6= g ∈ G. Assume that element g has a reduced form g = a0t

ε1 · · · tεsas. Two cases arise:
1. s ≥ 1. In this case, for every i = 0, . . . , s, ai ∈ A, εi = ±1 and there is no

consecutive sequences of type t−1, ai, t or t, aj, t
−1 with ai, aj ∈ H. From K-separability of

H, it follows that, for every i = 0, . . . , s, there exists a normal subgroup Ni of A such that
A/Ni ∈ K and ai /∈ HNi. Thus, there will be no consecutive sequences of type t−1, aiNi, t
or t, ajNi, t

−1 with ai, aj ∈ H. So let N = N0 ∩ · · · ∩ Ns. By Proposition 2.1, A/N ∈ K
and, it is clear that, for every i = 0, . . . , s, ai /∈ HN and there is no consecutive subwords
of type t−1, aiN, t or t, ajN, t−1 with ai, aj ∈ H. Therefore the form

gρN = a0ρN tε1 · · · tεsasρN

is reduced and has length s ≥ 1. Consequently gρN 6= 1.
2. s = 0 i.e. g ∈ A. Since A is K-residual, there exists a normal subgroup N of A such

that A/N ∈ K and g /∈ N , i.e. gN 6= N . So, gρN 6= 1.
Hence, for any element g 6= 1, there exists a normal subgroup N in A, such that

A/N ∈ K and the homomorphism ρN : G −→ GN maps element g to a non identity
element. Consequently, G is residually a group GN , where A/N ∈ K. Therefore G is
K-residual.

Conversely, suppose G is K-residual. Evidently, its subgroup A has the same property.
It remains to show that H is K-separable in group A. If H is not K-separable in A, we
choose element a ∈ A \H such that a ∈ NH, for all normal subgroup N of A such that
A/N ∈ K. Let g = t−1ata−1. Then g has length greater than 1. By Britton’s lemma, g 6=
1. Let M be a normal subgroup of G such that G/M ∈ K and g /∈ M , since G isK-residual.
So let R = M ∩A. R is a normal subgroup of A and furthermore A/R ∈ K. Consequently
the canonical homomorphism A −→ A/R extends to an epimorphism π : G −→ GR, where
GR = 〈A/R, t; t−1HR/R t = HR/R, ϕR〉. Hence a ∈ RH by the choice of a. Thus,
there exists h ∈ H such that π(a) = h̄. Then π(g) = π(t−1ata−1) = t−1h̄th̄−1 = 1. Hence,
g ∈ Ker(π) = 〈R〉G ≤ M and this is a contradiction.

We remark that, the necessary condition for Theorem 1.2 will also holds when K satisfies
only Properties 1 and 2 of the definition of root-class.
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3. Generalization

Let A be a group and let I be an index set. Let Hi and Ki, i ∈ I be families of
subgroups of group A with (ϕi)i∈I a family of maps such that ϕi : Hi −→ Ki is an
isomorphism. Then the HNN-extension with base group A, stable letters ti, i ∈ I, and
associated subgroups Hi and Ki, i ∈ I, denoted by

G = 〈A, ti (i ∈ I); t−1
i hiti = ϕi(hi), hi ∈ Hi〉

is the group generated by all the generators of A and elements ti, (i ∈ I) and defined by
all the relators of A and all possible relations of form t−1

i hiti = ϕi(hi), hi ∈ Hi for all
i ∈ I.

The group G defined above will be called the multiple HNN-extension of base group A,
stable letters ti, i ∈ I, and associated subgroups Hi and Ki, i ∈ I.

In fact, let G0 = A and

G1 = 〈A, t1; t−1
1 H1t1 = K1, ϕ1〉;

we see that the double HNN-extension

G2 = 〈A, t1, t2; t−1
1 H1t1 = K1, t

−1
2 H2t2 = K2, ϕ1, ϕ2〉

is the HNN-extension with base group G1, stable letter t2, and associated subgroups H2

and K2 via ϕ2; i.e.
G2 = 〈G1, t2; t−1

2 H2t2 = K2, ϕ2〉.
Thus, for j of an index set I, Gj is the HNN-extension with base group Gj−1, stable letter
tj and associated subgroups Hj and Kj via ϕj i.e.

Gj = 〈A, t1, . . . , tj; t−1
1 H1t1 = K1, . . . , t

−1
j Hjtj = Kj, ϕ1, . . . , ϕj〉

= 〈Gj−1, tj; t−1
j Hjtj = Kj, ϕj〉

For this construction, we have the following results.

Theorem 3.1. Let K be a root-class. For any index set I, the multiple HNN-extension

G = 〈A, ti (i ∈ I); t−1
i hiti = ϕi(hi), hi ∈ Hi〉

with base group A, stable letters ti, i ∈ I, and associated subgroups Hi and Ki via ϕi (i ∈
I), is K-residual if A is K-residual and there exists a sequence (σi)i∈I of homomorphisms
of group Gi onto some group Xi of root-class K, such that σi is one-to-one on subgroup
Hi for all i ∈ I.

The proof is similar to the proof of Theorem 1.1.

For other criteria of root-class residuality of multiple HNN-extensions with base group
A, stable letters ti and associated subgroups Hi and Ki (i ∈ I), we may assume the
equality of the associated subgroups Hi and Ki for all i ∈ I.

So, suppose Hi = Ki and ϕi is the identity map on Hi for all i ∈ I. Then for such
group we have the following criterium which generalizes Theorem 1.2 and the proof is just
a repetition of its.

Theorem 3.2. The multiple HNN-extension

G = 〈A, ti (i ∈ I); t−1
i hiti = ϕi(hi), hi ∈ Hi〉

with base group A, stable letters ti, i ∈ I, and associated subgroups Hi and Ki via ϕi such
that Hi = Ki and ϕi is the identity map on Hi for all i ∈ I, is K-residual if and only if
A is K-residual and subgroup Hi is K-separable in Gi for all i ∈ I.
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