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Abstract

This is a survey of some recent results obtained on root-class residuality.
First, we review and extend some properties of root-class residuality of
generalized free products and HNN-extensions. Then conditions such that,
by adjoining roots to a root-class residual group, the resulting group is
again root-class residual, are derived. These results are extended to
generalized free product of infinitely many groups amalgamating a
common subgroup and also to multiple HNN-extensions. Further, they are
applied to study root-class residuality of some one-relator groups.

1. Introduction

Let /C denote an abstract non-empty class of groups. Then K is called a root-
class if the following conditions are satisfied:

1. K is closed under taking subgroups, i.e., if Ae X and B < A, then
Bek.
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2. K is closed under taking direct products, i.e., if Ae K and B e K, then
Ax B e K.

3.1f 1<C < B < A is asubnormal sequence and A/B, B/C e K, then there
exists a normal subgroup D in group A such that D < C and A/D e K. See [6], for
more details about root properties.

We recall that a group G is root-class residual (or K -residual, for a root-class
K) if, for every non-identity element g € G, there exists a homomorphism ¢ from
G to some group G’ of root-class K such that ge = 1. Equivalently, G is K -
residual if, for every non-identity element g € G, there exists a normal subgroup N
of G such that G/N € K and g ¢ N.

Famous examples of root-classes are the class of all finite groups, the class of all
finite p-groups, the class of all soluble groups, the class of all finitely generated
nilpotent groups. For these examples, root-class residuality is just residual finiteness,
finite p-groups residuality, residual solvability, finitely generated nilpotent
residuality, respectively. Thus, root-class residuality is more general. Residual
finiteness, finite p-groups residuality, residual solvability are the most investigated
residual properties of groups. See for example [2, 3, 14-16].

In this paper, we present some results on root-class residuality of generalized
free products and HNN-extensions. In [1], some properties of root-class residuality
of amalgamated free products were obtained. Analogous results for HNN-extensions
were proved in [19]. Here, we review and extend these results. We first recall
with proofs, root-class residuality of free groups and free products of root-class
residual groups. Then sufficient conditions for root-class residuality of generalized
free product G =(A=*B; H =K, ¢) of root-class residual groups A and B

amalgamating subgroups H and K through the isomorphism ¢, and for root-class

residuality of HNN-extensions G = (A, t; t~Iht = g(h), h e H) with root-class
residual base group A are derived; for some particular cases, necessary and sufficient
conditions (criteria) are given. Further, conditions for adjoining roots to root-class
residual groups to be root-class residual are stated. The results are extended to
generalized free product of infinitely many groups amalgamating a common
subgroup and also to multiple HNN-extensions. Finally, we apply these results to
study root-class residuality of some one-relator groups.



ROOT-CLASS RESIDUALITY OF SOME FREE CONSTRUCTIONS 3

2. Root-class Residuality of Free Groups and Free Products

In this section, we present root-class residuality of free groups and free products
of root-class residual groups.

Let K be a root-class of groups. The following properties are easily verified.
Lemma. Let KC be a root-class of groups. Then:

1. If a group G has a subnormal sequence with factors belonging to class K,
then G € K.

2.1f F<G, G/F e K and F € K, thengroup G e K.
3.1f AJG, B<JG, G/Ae K and G/B e K, then G/(AN B) K.

Indeed, root-class is closed for extensions. This follows from the definition of
root-class. So the first property of Lemma is satisfied. The second and third
properties are easily verified by the definition of root-class.

In [6], Theorem 6.2, Gruenberg states that

Free product of root-class residual groups is root-class residual if and only if
every free group is root-class residual.

However, it happens that the above given condition is necessary and sufficient
for every root-class /.

Theorem 2.1. Every free group is X -residual, for every root-class K.

Proof. We see that every root-class C contains a non-trivial cyclic group
(Property 1 of the definition of root-class). If IC contains an infinite cyclic group,
then, by Lemma, K contains any group possessing subnormal sequence with
infinite cyclic factors; thus all finitely generated nilpotent torsion-free groups belong
to class K. Also, if K contains a finite non-trivial cyclic group, then IC contains a
group of prime order p and consequently, by Lemma, K contains all groups
possessing subnormal sequence with factors of order p; hence all finite
p-groups belong to K. So any root-class contains all finitely generated nilpotent
torsion-free groups or all finite p-groups for some prime p. But free groups are
residually finitely generated nilpotent torsion-free ([13], p. 347) and also residually
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p-finite ([7], p. 121). Therefore, free groups are K -residual, for every root-class K
and this ends the proof of Theorem 2.1.

Now, from the proof of Theorem 2.1 and the Gruenberg’s result formulated
above, Theorem 2.2 directly follows:

Theorem 2.2. Free product of root-class residual groups is root-class residual.

3. Root-class Residuality of Generalized Free Products

This section is focused on the study of root-class residuality of generalized free
products.

We first give some useful properties of the construction of free product of
groups with amalgamated subgroups.

Let A and B be two groups, each of which is given by the presentation:

A=(ay, ay, .., am; W),
B = (by, by, ..., by; V).

Let also H and K be subgroups of group A and B, respectively, and let ¢ be an
isomorphism of group H onto group K. Then by free product of groups A and B,
amalgamating subgroups H and K through the isomorphism ¢, we mean the group

denoted G = (A * B; H = K, ¢), which is given by the presentation
G =(ay, ap, ..., am, by, by, ..., by; W, V, h =he (h e H)).

Thus, the set of generators of group G is the disjoint union of the sets of
generators of groups A and B; and the set of the defining relations of group G
consists of the defining relations of groups A and B and every possible relation of the
form h = he, where h is an element of H in the generators ay, a,, ..., 8y, and he

is an element of K in the generators by, b,, ..., b,, which is the corresponding image
by the mapping ¢ of h.

To point out the fact that groups A and B are identified with the indicated
subgroups of group G, we denote this group by G = (A*B; H) and call it the
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free product of groups A and B amalgamating subgroup H (considering that
isomorphism ¢ is given).
A reduced form of an element g € G is the representation of this element as

product
g = XXg - Xs;,

where components X, X,, ..., X belong, in turn, to subgroups A and B, and if

s > 1, then any of these components does not belong to subgroup H.

In general, an element g of group G = (A * B; H) can have more than one

reduced form. In this case, components of the same index lie in the same subgroup A
or B and the number of components in these forms is the same. We call this number
the length of element g and denote 1(g).

Thus if element g = XXy ---Xs of group G = (A=*B; H) is reduced and
s>1 theng=1 If s=1 then ge Aor geB.

From Theorem 2.2 and H. Neumann’s theorem ([12], p. 212), the following
result is easily established:

Theorem 3.1. Let K be a root-class. Then the generalized free product G =
(A= B; H) of groups A and B amalgamating subgroup H is X -residual if groups
A and B are K -residual and there exists a homomorphism o from G to a group G’
of root-class K, such that o is injective on H.

Proof. Let K be a root-class. Let G = (A= B; H) be the generalized free

product of groups A and B amalgamating subgroup H and let groups A and B be I -
residual. Suppose there exists a homomorphism o of G to a group of class &, which
is injective on H. Let N be the kernel of the homomorphism o. Then G/N e K and

N N H =1. Now, by H. Neumann’s Theorem ([12], p. 212) N is the free product of
a free group F and some subgroups of group G of the form

g*Ag NN, g*BgNN, (1)

where g € G. The subgroups of the form (1) are X -residuals since are groups A

and B. By Theorem 2.1, free group F is also K -residual. Thus N is a free product of
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root-class residual groups. Therefore, by Theorem 2.2, N is root-class residual.
Moreover, since G/N € K, by Property 2 of Lemma, it follows that group G is

root-class residual. Theorem 3.1 is proven.
Remark that Theorem 2.2 can be considered as a particular case of Theorem 3.1.

We also see that, if the amalgamated subgroup H is finite, then the formulated above
sufficient condition of root-class residuality of group G will be as well necessary.

Another restriction permitting to obtain simple criteria of root-class residuality
of generalized free product of groups A and B amalgamating subgroup H is the
equality of the free factors A and B.

More precisely, let G be the generalized free product of groups A and B
amalgamating subgroups H and K through the isomorphism ¢. If A=B, H =K

and o is the identity map, we denote group G by G = A x A. This construction is
H

sometimes called the generalized free square of group A over subgroup H (see [9]).
Then for the generalized free square of group A over subgroup H we prove the
following criterion:

Theorem 3.2. Let X be a root-class. The group G = Ax A is K -residual if
H
and only if group A is K -residual and the subgroup H of A is C -separable.

We recall that subgroup H of a group A is root-class separable (or K -
separable, for a root-class &) if, for any element a of Aand a ¢ H, there exists a
homomorphism ¢ from A to a group of root-class X such that ap ¢ He. This
means that, for each a € A\H, there exists a normal subgroup N of A such that
A/N € K and a ¢ NH.

Let us now prove Theorem 3.2.
Proof. Let K be a root-class. Let G = A * A. For any normal subgroup N of
H

group A one can define the generalized free square

Gy = AN _» AN

HN/N

of group A/N over subgroup HN/N and the homomorphism gy : G — Gy,

extending the canonical homomorphism A — A/N. It is evident that group Gy is
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an extension of free group with group A/N. So, if A/N belongs to root-class K,
then by Lemma and Theorem 2.1, Gy is K -residual. Thus, to prove that G is K -
residual, it is enough to show that G is residually a group of the form Gy such that
A/N e K.

Suppose group A is K -residual and subgroup H of A is K -separable. Let
g € G such that g = 1. Also, let g = a;---a5 be the reduced form of element g.
Then two cases arise:

1. s> 1. Inthiscase, a; € A\H forall i =1, ..., s. From K -separability of H,
it follows that, for every i =1, ..., s, there exits a normal subgroup N; of group A
such that A/Nj e £ and a ¢ HN;. Let N =N;--Ng. By Lemma,
A/N € K and, itis clear that, forall i =1, ..., s, a ¢ HN, i.e,, 3N ¢ HN/N. So,

forall i =1, ..., s, ajey ¢ Hey. Therefore the form
geN = &qeN - a8seN
is reduced and has length s > 1.
Consequently gey = 1.

2.s=1 ie,9 e A Asgroup Ais K -residual, there exists a normal subgroup
N of Asuchthat A/N € £ and g ¢ N, i.e,, gN = N. Hence gey = 1.

Thus, in any case, for an element g =1 in group A, there exists a normal
subgroup N such that A/N e K and the homomorphism ey : G — Gy transforms
g to a non-identity element. Hence group G is residually a group Gy, where
A/N e K. Therefore G is K -residual.

Conversely, suppose group G is X -residual. Evidently this subgroup A has the
same property. Let us prove that H be a X -separable subgroup of group A. Let y be
an automorphism of group G canonically permuting the free factor. Let a € A\H.

Then ay = a. Since G is K -residual, there exists a normal subgroup N of G such
that G/N € K and aN = ayN. Let M = N () Ny. Then

My = Ny Ny2 = Ny N = M.

Consequently, in the quotient-group G/M, it is possible to consider the
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automorphism ¥, induced by vy. Since aN = ayN and M < N, aM = ayM. On
the other hand, ayM = (aM)y. Thus aM = (aM)y. Since vy acts identically on H,
¥ also acts identically on HM/M. So and since aM = (aM )y, it follows that
aM ¢ HM /M, i.e., ae ¢ He, where ¢ is the canonical homomorphism of group G
onto G/M. Consequently, G/M e K and the K -separability of subgroup H of

group A is demonstrated.

In [11], the above result is obtained for the particular case of the class of all
finite p-groups.

We also remark that the necessary condition for Theorem 3.2 takes place even at
more gentle restriction on class 1, namely when /C satisfies only properties 1 and
2 of the definition of root-class.

Further, the generalized free product of infinitely many groups amalgamating
subgroup is introduced in [17]. Some results on residual properties of this
construction are shown in [5]. We extend Theorems 3.1 and 3.2 above to generalized
free products of every family (G, ),_, of groups G, amalgamating a common

subgroup H (Theorems 3.3 and 3.4).

Let (G ), be a family of groups, where the set A can be infinite. Let
H, <G,, for every A € A. Suppose also that, for every A, u € A, there exists

an isomorphism ¢, : H, — H, such that, for all A, p, ve A, the following

conditions are satisfied: ¢y, = idy, , (p{ﬁ = Qs PauPuyv = Pay- Letnow
G=(x Gy; h =h (heH,, A\, ue A
(keA A NP ( by u )

be the group generated by groups G, (A € A) and defined by all the relators of

these groups and moreover by all possible relations of the form he;, = h, where

heH,, A, ue A Thenitis evident that every G; can be canonically embedded

in group G and if we consider G, < G, then for all different A, p € A,
G), NG, =Hy, =H,.

Let us denote by H the subgroup of group G that equals to the common
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subgroups H,. Then G is the generalized free product of the family (G, ), _, of
groups G, (A eA) amalgamating subgroup H. We will consider, as well, that
G, <G, for all A e A. See for example [5] or [17] for details about the

generalized free product of a family of groups.

Theorem 3.3. Let K be a root class. The generalized free product G of the
family (G, ), _, of group G, amalgamating subgroup H is K -residual if every

group G, is K -residual and there exists a homomorphism o from G to a group G’

of class K such that o is injective on H.
Proof. The proof is the same as that of Theorem 3.1.

In fact, let group G; be K -residual, for all A € A. Suppose there exists a
homomorphism ¢ of G to a group of class /C, which is one-to-one on H and let
N = kero. Then G/N € £ and N H =1. But N is the free product of a free

group F and some subgroups of group G of the form
-1
g Grg NN,

(where g € G and A € A) which are root-class residuals. Since F is also root-class

residual by Theorem 2.1, N is a free product of root-class residual groups. Thus, by
Theorem 2.2, N is root-class residual. Moreover, since G/N e K, by property 2 of

Lemma, it follows that group G is root-class residual and the theorem is proven.

Suppose now that, for all A € A, G, = A Then, in this case, the generalized
free product of the family (G, ), _, of groups G, amalgamating subgroup H is

called the generalized free power of group A over subgroup H. It is denoted by P
and writtenas P = A x --- x A. For such group P, we have the following criterion:
H H
Theorem 3.4. Let K be a root-class. The group P = Ax---x A is K -residual
H H

if and only if group A is K -residual and the subgroup H of A is K -separable.

The proof is similar to that of Theorem 3.2.
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4. Root-class Residuality of HNN-extensions

In this section, we study root-class residuality of HNN-extensions. Let us recall
the construction of HNN-extensions.

Let A be a group, H and K two subgroups of group Aand let ¢ : H — K be an

isomorphism. Then the HNN-extension with base group A, stable letter t and
associated subgroups H and K denoted by

G = (A t;t7Iht = (h), h € H)

is the group generated by all the generators of the group A and one more element t
and defined by all the relators of group A and all possible relations of form

t~tht = @(h), h e H.
For this construction, every element g € G can be written as
g = Xpt™ ---t°rx,, @)
where forany i =0, 1, ..., r element x; belongs to the subgroup A, & = £1 and if

r > 1, there is no consecutive subwords of type t‘lxit or txjt‘1 with x; e H or

Xj € K inscript (2).
Such form of element g is called reduced and r — its length.

By Britton’s Lemma ([12], p. 181), if g = xqt®™ ---t*rx, is reduced and r > 1,
then g = 1 in group G.

The HNN-extension with base group A, stable letter t and associated subgroups
H and K can also be denoted

G = (A t; tHt = K, o).
We prove:

Theorem 4.1. The HNN-extension G = (A, t; t THt = K, ¢) is K -residual for

a given root-class K if the base group A is K -residual and there exists a
homomorphism o of G onto some group of root-class X such that o is one-to-one
on H.
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We establish Theorem 4.1 from Theorem 2.2 and H. Neumann’s Theorem ([12],
p. 212):

Proof. Let IC be a root-class. Let G = (A, t; t™*Ht = K, ¢) be the HNN-
extension with base group A, stable letter t and associated subgroups H and K via ¢.
Assume that the group A is K -residual. Suppose there exists a homomorphism o of
G onto some group of class XC, such that o is one-to-one on H. Denote by N the
kernel of the homomorphism . Then G/N € K and N N H =1. By Neumann’s

Theorem ([12], p. 212) or by [8], N is the free product of a free group F and some
subgroups of group G of the form

g tAg NN, ®)

where g € G. Since group A is K -residual, the subgroups of form (3) are also X -
residuals. Therefore N is X -residual as a free product of K -residual groups
(Theorem 2.2), since free group F is X -residual (Theorem 2.1). Moreover, since
G/N € K, then by property 2 of Lemma, it follows that G is K -residual and
Theorem 4.1 is proven.

It is evident that if H = K =1 or if H is finite, then the above sufficient
condition of root-class residuality of group G will be necessary as well.

Another restriction permitting to obtain criteria for root-class residuality of
HNN-extension with base group A, stable letter t and associated subgroups H and K
is the equality of the associated subgroups. We prove:

Theorem 4.2. Let K be a given root-class. Let G = (A, t; t 'Ht = K, ¢) be

the HNN-extension with base group A, stable letter t and associated subgroups H
and K via ¢ such that H = K and ¢ is the identity map on H. Then G is K -
residual if and only if group A is K -residual and subgroup H is K -separable in A.

Proof. So let K be a root-class. Let G = (A, t; t Ht = K, ¢) be the HNN-

extension with base group A, stable letter t and associated subgroups H and K such
that H = K and ¢ is the identity map on H. Then for any normal subgroup N of
group A, one can define the HNN-extension

Gy = (A/N, t; t 7L HN/Nt = HN/N, oy ),
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where ¢y is the identity map on subgroup HN/N of group Gy, and the
homomorphism py :G — Gy, extending the canonical homomorphism A — A/N

and t — t. Consider the homomorphism o : Gy — A which is the identity map on
A and which maps t — 1. Then kerc = (t)GN is free by [12], (Theorem 6.6,
p. 212). So GN/(t)GN = A/N and Gy is an extension of a free group by group
A/N. Therefore, if A/N belongs to root-class K, then Gy is K -residual. Thus, to

prove K -residuality of G, it is enough to show that G is residually a group of kind
Gy, where A/N e K.
Suppose the group A is K -residual and the subgroup H is K -separable in A.

Let 1= g € G. Assume that element g has a reduced form g = agt™ ---t*sa;. Two

cases arise:
1. s > 1. Inthis case, forevery i =0, ..., s, aj € A, ¢ = £1 and there are no

consecutive sequences of type tL a, t ort aj, t1 with aj, a; € H. From K-

separability of H, it follows that, for every i =0, ..., s, there exists a normal
subgroup N; of A such that A/N; € K and & ¢ HN;. Thus, there will be no

consecutive sequences of type t ™1, aiNj, tor t, a;N;, t~1 with aj, aj € H. So let
N =NgN---NNg. By Lemma, A/N € K and, it is clear that, for every i =0, ..., s,
a; ¢ HN and there is no consecutive subwords of type 1, aN, t or t, a;N, !

with a;, a; € H. Therefore the form

gpn = 8PNt - tsagpy
is reduced and has length s > 1. Consequently, gpy # 1.

2. 5=0, i.e,, g € A Since A is K -residual, there exists a normal subgroup N
of Asuch that A/N e K and g ¢ N, i.e, gN = N. So gpy # 1.

Hence, for any element g = 1, there exists a normal subgroup N in A, such that
A/N e K and the homomorphism py : G — Gy maps element g to a non-identity
element. Consequently, G is residually a group Gy, where A/N e K. Therefore G

is /C -residual.
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Conversely, suppose G is K -residual. Evidently, its subgroup A is K -residual.
It remains to show that H is /C -separable in group A. If H is not fC -separable in A,
we choose element a € A\H such that a € NH, for all normal subgroups N of A,

where A/N € K. Let g = t~tata™t. Then g has length greater than 1. By Britton’s
Lemma, g = 1. Let M be a normal subgroup of G with G/M € K and g¢ M,

since G is K -residual. So let R=M N A R is a normal subgroup of A and
furthermore A/R e K. Consequently the canonical homomorphism A — A/R

extends to an epimorphism 7 :G — Gg, where Gg = (A/R, t; t - HR/Rt =
HR/R, @r). Hence a € RH by the choice of a. Thus, there exists h € H such

that m(a)=h. Then n(g) = n(t ata™t)=t~thth L =1. Hence, g e Ker(x) = (R)®
<M and this is a contradiction.

Remark 1. We remark that this result generalizes for example Lemma 3.1 in
[10], where analogous result is proven for the particular case of the class of all finite
p-groups. We also see that, if A=H = K, then A is a normal subgroup of G and
G/A = (t). Therefore G is an extension of a group of class K by a free group; and

thus is C -residual. We remark also that, the necessary condition for Theorem 4.2
also holds when K satisfies only Properties 1 and 2 of the definition of root-class.

Remark 2. We further remark that Theorem 4.2 can be strengthened. Indeed, if
we consider that the base group A is finitely generated and H = K via an
isomorphism ¢, where ¢ is induced by an automorphism of A, then the criterion of

the Theorem 4.2 also holds.

Although HNN-extensions are basically defined with multiple stable letters and
multiple associated subgroups, mostly HNN-extensions with only one stable letter
have been studied. However Shirvani in [17] examined residual finiteness of HNN-
extensions with multiple stable letters and associated subgroups (multiple HNN-
extensions). We also study root-class residuality of multiple HNN-extensions. We
will generalize Theorems 4.1 and 4.2 above to multiple HNN-extensions.

Let A be a group and | be an index set. Let H; and K;, i e | be families of
subgroups of group A with (g;);_, a family of maps such that ¢; : H; — K; isan

isomorphism. Then the HNN-extension with base group A, stable letters t;, i< I,
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and associated subgroups H; and K;j, i € I, denoted by
G =(At (i el)tiht = g(h), hy € Hy)

is the group generated by all the generators of A and elements t;, (i 1) and

defined by all the relators of A and all possible relations of form ti‘lhiti = ¢j(hy),

h € H; forall i e I.

The group G defined above will be called the multiple HNN-extension of base
group A, stable letters tj, i € I, and associated subgroups H; and K;, i € I.

In fact, let Gg = A and
] .
Gy = (A tg; tp Hity = Ky, 91);
we see that the double HNN-extension
G, = (A t, to: ti *Hity = Ky, to Hot, = K
2 = (A 1y, ty; t Hity = Ky, 137 Hoty = Ko, @1, 92)

is the HNN-extension with base group G, stable letter t,, and associated

subgroups H, and K, via ¢,; i.e.,
Lol
Gy = (Gy, ta; ty Haty = Ky, 93).
Thus, for j of an index set I, G; is the HNN-extension with base group Gj_y,
stable letter t; and associated subgroups H; and K; via ¢;, i..,
c1-1 -1
G] = (A, tl’ ey tj’ tl Hltl = Kl’ ey t] HJtJ = KJ’ [0 R (pJ>
-
= <Gj_1, tj, tj Hjtj = KJ, (pJ>
For this construction, we have the following results.

Theorem 4.3. Let K be a root-class. For any index set I, the multiple HNN-
extension

G = (At (i e 1) ity = gi(hy), hy  H;)

with base group A, stable letters tj, and associated subgroups H; and K; via oj
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(iel), is K -residual if Ais K -residual and there exists a sequence (c;);_, of
homomorphisms of group G; onto some group X; of root-class X, such that o is

one-to-one on subgroup H; forall i e I.

The proof is similar to the proof of Theorem 4.1.

For other criteria of root-class residuality of multiple HNN-extensions with base
group A, stable letters t; and associated subgroups H; and K; (i € 1), we may

assume the equality of the associated subgroups H; and K; forall i e I.

So, suppose H; = K; and ¢; is the identity map on H; forall i € I. Then for

such group we have the following criterion which generalizes Theorem 4.2 and the
proof is just a repetition of it.

Theorem 4.4. The multiple HNN-extension
G = (A ti (i 1)t ity = (hy), Iy € Hy)
with base group A, stable letters t;, i € I, and associated subgroups H; and K;
via @; such that H; = K; and o; is the identity map on H; forall i eI, is K-

residual if and only if A is K -residual and subgroup H; is K -separable in G; for

all i e I.
5. Adjoining Roots to Root-class Residual Groups

Let A be a group and a € A. Let n be a non-negative integer. Then the group

G=(A x;a=x") denoted by A x n(x) is obtained by adjoining roots to group A.
a=x

Let A be a group of a root-class . By adjoining roots to group A, we need not

to obtain a group of root-class XC. For this purpose, we have the following criteria.

Theorem 5.1. Let A be a group with element a of infinite order. Let A be
K -residual for a root-class K and for some given integer n > 1 class X contains

the cycle of order n. Then group G = (A, x; a=x")= A * (x) is K -residual if
a=x"

and only if the infinite cycle (a), generated by element a, is K -separable in A.

Proof. Suppose that subgroup (a) is not K -separable in group A. Then there
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exists an element g e A\(a) such that go e (a)e, for any homomorphism ¢ of

group G onto a group of class K. Since a = x", g € (x)¢ and thus [g, x]e = 1.
But element [g, x] = gxg‘lx‘1 is reduced since n > 1 and its length is greater than

1. Therefore [g, x] # 1 and hence, group G is not K -residual.

Conversely, let subgroup (a) be K -separable in group A. By Theorem 3.4, the

normal closure A® of subgroup A in group G is K -residual, since it is the
generalized free power of group A over subgroup (a) withindex | = {1, ..., n}, i.e.,

AC = Ax - x A (n times).
(@ (a)
Since G/A® = (x, x" =1) e K. Lemma in Section 2 implies now that G is K -
residual.
We can now apply this result to study root-class residuality of any group given
by the presentation G, = (a, b; [a™, b"] =1), (m, n > 1). Observe that
Gmn =(@) x H x (b).

am=x y=h"
We have the following result.

Theorem 5.2. Let K be a root-class. Let Gy, = (a, b; [a™, b"] = 1), where
m, n > 1. Group Gy, is K -residual if class I contains cyclic subgroups of order

m and n.

Proof. Let C be a root-class. Let m, n > 1. Assume that the cyclic subgroups
of order m and n belong to K. Let H = (X, y; [x, y] =1) be the free abelian group
of rank 2. Then clearly, H is K -residual and its subgroups (x) and (y) are K -

separable.

Let A=H «x n(b) = (x, b; [x, b"] = 1). By Theorem 5.1, Ais K -residual.
y=b

We claim that (x) is K -separable in A. Indeed, one can easily verify that

H = Ca((x)), the centralizer of subgroup (x) in group A. Therefore, if g € A\H,
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then [x, g] # 1, so there exists a homomorphism ¢ of group A onto a group of class

K such that [x, gl # 1, i.e., in particular, g¢ & (X)¢.

Let now g e H\(x), ie, g= x“y! where 1%0. Then g =x*b". Let

6 : A —> (b) suchthat x > 1 and b > b. Then go =b™ =1 and (x)o = 1. Let
oo be a homomorphism of group (b) onto a group of class K. Then gooj # 1.

Hence, subgroup (x) is K -separable in A.

Then applying again Theorem 5.1, we show that group G, = (a) x Ais
a =X

KC -residual.

Now, if m=1 or n =1, then G, is isomorphic to one of the groups A or H
above and thus, is /C -residual.

Remark 3. We remark in summary that the converse of Theorem 5.2 is not true.
For example, let /C be the class of all torsion-free groups; then G, € K, when

cyclic subgroups of finite orders do not belong to K. But there exists a partial
converse which holds for some additional condition on class 1, namely if C is
closed under quotient groups.

In fact, suppose in addition that & contains any quotient group of its group,
i.e., K is closed under taking homomorphic images. Let G, be I -residual.

Assume for example, that the cyclic subgroup of order m does not belong to K.
Then there exists a prime divisor p of integer m, such that the cyclic subgroup of
order p does not belong to K. Further, it is evident that, every element x of a group
X of aroot-class K has a finite order, relatively prime with p. Indeed, let | f | be the

order of an element f. If |x|= oo, then (x) e K, and since K is closed under
quotient groups, the cyclic subgroup of order p would belong to K. Hence, | x| < o

and ged(| x|, p) =1, since the cyclic subgroup of order p does not belong to K. So
let ¢ =[a"P, b"]. Obviously c = 1. Then there exists a homomorphism ¢ of
group G,, onto a group X of class C such that ce = 1. Let k = |(am/p(p)|. Then

k < oo and ged(k, p) = 1. Hence ((ap)™P) =1 and this implies that
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[((a@)™P), bMg] = 1. ()

On the order hand,

[((a@)™P)P, b"¢] = 1. (%)

Now, from (x) and (xx) and since integers k and p are relatively primes, it
follows that

co = [(ap)™P, b"g] = 1
and this is a contradiction.

Corollary. Any group G, = (a, b; [a™, b"]=1), where m, n >1 is residually

a finite p-group if and only if integers m and n are p-numbers, for some prime p.
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