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АЛГОРИТМ КОМПЕНСАЦИИ ИСКАЖЕНИЙ ЦВЕТА
ПРИ ПЕЧАТИ

Аннотация. Предлагается вычислительный алгоритм компенсации ис-
кажений при печати, основанный на идее разбиения Делоне евклидова простран-
ства.
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ALGORITHM FOR COMPENSATION OF COLOR
DISTORTIONS DURING PRINTING

Abstract. A computational algorithm is proposed to compensate for printing
distortions based on the idea of dividing the Euclidean space by Delaunay.
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1. Введение

При создании художественных изображений на компьютере и их пе-
чати с помощью принтера на бумаге, на ткани или другом материале часто
возникает такая проблема. Художник задумал и ввел в графический файл
один цвет, а в результате печати неожиданно получил совсем другой. Мо-
гут ли такие разделы математики, как дискретная геометрия и методы
вычислений, помочь в решении этой проблемы? Оказывается, могут.

2. Цветовое пространство RGB

Везде далее мы старались вести изложение максимально простым
языком, и потому любые рассуждения следует воспринимать как имеющие
«первое приближение» и нуждающиеся в уточнении.

Если в темноте смешать свет трех лучей: красного, зеленого, синего
(англ. Red, Green, Blue — сокр. RGB) с яркостями, заданными соответ-
ствующими числовыми величинами (xR, xG, xB), которые могут независи-
мо изменяться в диапазоне целых чисел [0..255], то можно получить любой
цвет, различаемый человеческим глазом. Таким образом, любой цвет — это
точка с тремя координатами

x = (xR, xG, xB),

расположенная в 3-мерном пространстве R3, снабженном прямоугольной
декартовой системой координат с осями OxRxGxB. А если быть более точ-
ным, цветовые точки расположены в кубе

C = [0..255]3 =

= {x = (xR, xG, xB) ∈ Z3 | 0 6 xw 6 255, w = R,G,B}.
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3. Эмпирическая функция печати fπ : R3 −→ R3

3.1. Определение эмпирической (табличной) функции fπ.
Предположим, что художник имеет в своем распоряжении принтер

под именем «π» и пытается с ним работать. Он рисует на компьютере де-
таль изображения и закрашивает ее цветом x = (xR, xG, xB) ∈ R3. А после
печати на принтере получает другой реальный цвет y = (yR, yG, yB) ∈ R3.
(Значения чисел (yR, yG, yB) можно получить, если сканировать получен-
ное изображение на «очень хорошем» сканере, искажением которого мы
пренебрегаем.) Таким образом, мы получаем эмпирически заданную функ-
цию fπ, определенную работой принтера «π»:

fπ : C ⊆ R3 −→ C ⊆ R3,

x = (xR, xG, xB) 7−→ y = (yR, yG, yB) = fπ(x).

Формулу этой эмпирической функции мы не знаем. Однако некото-
рые ее значения можем найти, проводя серию экспериментов с печатью,
сканированием и заполняя следующую таблицу.

Таблица 1
Цвет, заданный художником Цвет, полученный после печати

в графическом файле на принтере «π» и сканирования
x(1) = (xR(1)

, xG(1)
, xB(1)

) y(1) = (yR(1)
, yG(1)

, yB(1)
)

x(2) = (xR(2)
, xG(2)

, xB(2)
) y(2) = (yR(2)

, yG(2)
, yB(2)

)

. . . . . .

3.2. Мера искажения цвета при печати. Метрика.
Мера искажения цвета при печати может быть определена как рас-

стояние между точкой x = (xR, xG, xB), представляющей цвет, заложен-
ный художником в графическом файле, и цветовой точкой y = (yR, yG, yB),
полученной после печати и сканирования. В качестве расстояния можно
взять всем привычную Евклидову метрику, вычисляемую по формуле:

d(x,y) =
√

(xR − yR)2 + (xG − yG)2 + (xB − yB)2.

Очевидно, что d(x,y) > 0. При полном отсутствии искажения d(x,y) = 0,
и увеличивается при росте искажений.

3.3. Цветовой портрет принтера.
Предположим, что, экспериментируя с принтером «π», мы перебрали

все доступные цвета x(i) = (xR(i)
, xG(i)

, xB(i)
) (i = 1, 2, . . . , N) и заполни-

ли таблицу 1 соответствующими значениями y(i) = (yR(i)
, yG(i)

, yB(i)
). Это

потребовало бы проведения N = 2563 = 16 777 216 ≈ 17 млн испытаний.
Дадим геометрическуюиллюстрацию гипотетически полученному ре-

зультату. Все точки x = (xR, xG, xB), как и прежде, заполняют цветовой
куб C = [0..255]3 ⊆ R3. А соответствующие им точки y = (yR, yG, yB) =
f(x) заполняют некоторую криволинейную область Cπ = fπ(C) ⊆ R3, так-
же расположенную внутри цветового куба C ⊆ R3.

Фигуру Cπ будем называть областью печати принтера «π» или цве-
товым портретом принтера «π», поскольку любые цвета y = (yR, yG, yB),
лежащие внутри области Cπ, могут быть напечатаны на принтере «π».
А цвета, лежащие снаружи, напечатаны быть не могут.
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3.4. Задача компенсации искажения цвета при печати.
Предположим, что художник хочет получить на бумаге цвет y =

(yR, yG, yB) из допустимой области Cπ. И желает узнать, какой для этого
цвет x = (xR, xG, xB) ему следует разместить в графическом файле. Он
мог бы найти соответствующий y = (yR, yG, yB) в правой колонке нашей
гипотетической таблицы 1, содержащей около 17 млн строк, и взять соот-
ветствующий ему x = (xR, xG, xB) в левой части этой строки. То есть вос-
пользоваться эмпирически (или таблично) заданной обратной функцией

f−1
π : (yR, yG, yB) = y 7−→ f−1

π (y) = x = (xR, xG, xB).

Какие же проблемы мы видим при практическом использовании это-
го метода?

а) Хранение в компьютере таблицы из 17 млн строк на сегодняшний
день не так уж обременительно (потребуется всего около 98 MB).

б) Проведение 17 млн испытаний для домашнего принтера (да и для
производственного) было бы слишком дорогим.

в) Поиск в неупорядоченной таблице, содержащей 17 млн строк, при
массовом использовании метода был бы слишком долгим.

4. Метод компенсации искажения цвета при печати

Следует составить сокращенную таблицу для меньшего количества
точек x(i) = (xR(i)

, xG(i)
, xB(i)

), равномерно распределенных по кубу C =

[0..255]3. Например, можно взять их в узлах кубической решетки. Назо-
вем эту систему LX . Соответствующие им точки y(i) = (yR(i)

, yG(i)
, yB(i)

)
образуют систему, которую назовем LY . В силу искажения при печати она
выглядит как деформированная (согнутая и смятая) кубическая решетка.
Если натянуть на каждую «клеточку» эластичную пленку, внутри полу-
чится выпуклая оболочка conv{LY } множества LY . Эта оболочка пред-
ставляет собой многогранник, близкий к области печати Cπ принтера «π».

 

Мы построим приближенную обратную функцию

f̂−1
π (y) : conv{LX} = C ←− conv{LY }

как линейную интерполяцию функции f−1
π , заданную сокращенной табли-

цей на этих избранных точках f−1
π : y(i) 7−→ x(i).

Теперь подробнее. Если художник хочет получить на бумаге (или тка-
ни) цвет y0 = (yR0 , yG0 , yB0), то среди точек y(i) ∈ LY найдем четыре
точки y(0), y(1), y(2), y(3), наиболее близкие к точке y0, которые образу-
ют тетраэдр (3-мерный симплекс), содержащий внутри эту точку. И пусть
x(0), x(1), x(2), x(3) — соответствующие им точки сокращенной таблицы
из множества LX .
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Составим барицентрическое разложение точки y0 по заданным точ-
кам y(0), y(1), y(2), y(3):

y0 = λ0 · y(0) + λ1 · y(1) + λ2 · y(2) + λ3 · y(3),

λ0 + λ1 + λ2 + λ3 = 1, λ0, λ1, λ2, λ3 > 0
(1)

(такие числа λ0, λ1, λ2, λ3 существуют и вычисляются однозначно по из-
вестным формулам, см. [1, 3]).

Осталось лишь еще раз написать разложение (1), сохранив значения
коэффициентов λ0, λ1, λ2, λ3 и заменив точки y(i) на x(i). И мы получим
ответ к нашей задаче. Это цветовая точка x̂0, которую художник дол-
жен разместить в графическом файле, чтобы при печати на принтере «π»
получить желаемый цвет y0 (с точностью до погрешности линейной ин-
терполяции). Итак,

x̂0 = λ0 · x(0) + λ1 · x(1) + λ2 · x(2) + λ3 · x(3). (2)

Остается нерешенной лишь одна, как ни странно, вычислительно
сложная задача: как выбрать подходящие точки y(0), y(1), y(2), y(3) в си-
стеме LY . Ее решение мы найдем в идее построения разбиения Делоне
пространства R3, заданного конечной системой точек LY ⊆ R3.

5. Разбиение Делоне

Точки y(0), y(1), y(2), y(3) из конечной системы LY ⊆ R3 являют-
ся вершинами 3-мерного симплекса (тетраэдра) Делоне, если существует
шар, который: а) содержит их на своей поверхности, б) не содержит внут-
ри ни одной точки системы LY . В общем случае говорят о многогранниках
Делоне, которые могут содержать более четырех вершин. Однако в нашем
случае точки y(i) ∈ LY случайны и попадание более четырех из них на од-
ну сферу маловероятно. Поэтому мы будем считать все многогранники
Делоне тетраэдрами.

Выпуклая оболочка множества точек LY оказывается целиком за-
полнена такими тетраэдрами без пересечений. Соседние тетраэдры могут
иметь лишь общую вершину, ребро или 2-мерную грань. Это и есть раз-
биение Делоне области conv{LY }.

Однако на практике вычислять и хранить в компьютере целиком все
разбиение Делоне, заданное системой точек LY , было бы долго и неэф-
фективно. Нам нужен лишь один тетраэдр, содержащий точку y0 (цвет,
задуманный художником). Идею решения мы найдем в статье Б.Н.Дело-
не [2] за 1937 г., в которой он предлагает так называемый «метод пустого
шара» для построения разбиения, впервые введенного им в этой же статье.

6. Поиск тетраэдра Делоне, содержащего точку y0

Начнем с цитаты из статьи [2].
«Рассмотрим шар, — увеличивающийся, уменьшающийся и как угод-

но передвигающийся между точками системы LY [авторские обозначения
изменены], — подчиненный лишь одному условию: не содержать внутри
себя точек этой системы. Мы будем называть такой шар пустым. Нач-
нем увеличивать радиус пустого шара, оставляя его центр на месте, по-
ка шар не наткнется своей поверхностью на какую-нибудь точку систе-
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мы LY . < . . . > Будем теперь дальше увеличивать радиус пустого шара,
отодвигая его центр от этой точки или, если точек, на которые он на-
ткнулся, было сразу несколько, — от того линейного подпространства, ко-
торое определяется этими точками. Продолжая так дальше, мы убедимся,
что в системе LY существует пустой шар, на поверхности которого лежит
n-мерный [здесь 3-мерный] комплекс точек этой системы < . . . >, содержа-
щий не менее n+ 1 точки [здесь четырех точек].»

Начав с точки y0 как центра пустого шара, мы получим первичный
тетраэдр Делоне S(0), одна из вершин которого является ближайшей к y0

точкой системы LY .
Теперь вычислим коэффициенты λ0, λ1, λ2, λ3 барицентрического

разложения (1) относительно вершин S(0). Если все они неотрицательны,
то точка y0 уже лежит внутри тетраэдра S(0). Значит, мы получили же-
лаемое, и процесс завершен.

В противном случае возьмем наименьшее λi из отрицательных значе-
ний λ0, λ1, λ2, λ3. Значит, точка y0 лежит с внешней стороны от грани Fi
тетраэдра S(0), полученной выкидыванием i-й вершины y(i). И притом
наиболее удалена от плоскости грани по сравнению с другими гранями.
Аналогично предыдущему будем смещать центр пустого шара в сторону
внешней нормали грани Fi, опираясь на ее вершины, пока не наткнемся
на вершину соседнего тетраэдра S(1).

Будем продолжать таким образом, переходя от одного тетраэдра Де-
лоне к другому, приближаясь к точке y0, пока не «поймаем» точку y0

внутри очередного тетраэдра S(k). Либо не придем к такой ситуации, ко-
гда во внешнем полупространстве очередной грани Fi не найдется ни одной
точки системы LY .

Последний исход означает, что точка y0 лежит вне выпуклой обо-
лочки conv{LY } ≈ Cπ множества LY . То есть художник задумал цвет y0,
лежащий вне области печати принтера «π», и он не может быть напечатан.
В этом случае в качестве утешения мы можем предложить ему цвет x̃0, по-
лученный по формуле (2), в которой все отрицательные коэффициенты λ0,
λ1, λ2, λ3 заменены нулями. То есть цветовую точку x̃0, ближайшую жела-
емому цвету y0 из области печати Cπ принтера «π». Такой результат сле-
дует снабдить величиной предполагаемого искажения цвета d = d(x̃0,y0),
которая выходит за рамки погрешности линейной интерполяции.
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