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Аннотация. Посредством индуктивного подхода к гипотезе Коллатца
получено выражение для формирования числовых последовательностей при ис-
пользовании любого натурального значения делителя. Выполнены вычисления
для значений делителей в диапазоне от 3 до 120, при этом начальные значения
натурального числа варьировались от единицы до одного миллиарда. Для ряда
делителей устойчиво формируются числовые последовательности, заканчиваю-
щиеся значением 1, подобно сиракузским последовательностям. Приведены фор-
мулировки гипотез, аналогичных гипотезе Коллатца.
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INDUCTIVE APPROACH TO THE COLLATZ CONJECTURE

Abstract. By applying an inductive approach to the Collatz conjecture, we ob-
tain an expression for the formation of numerical sequences using any natural value
of the divisor. Calculations were performed for divisor values ranging from 3 to 120,
with initial values of the natural number varying from 1 to 1 billion. For a number of di-
visors, numerical sequences are consistently formed that end with the value 1, similar
to the Syracuse sequences. Hypotheses similar to the Collatz conjecture are presented.

Key words: inductive approach, Kollatz conjecture, divisor value, Syracuse
sequences, set of similarities, hypothesis formulation.

Ряд натуральных чисел, заканчивающийся единицей, в соответствии
с гипотезой Коллатца называют сиракузской последовательностью или
числом-градиной [1]. В работе [3] представлено выражение (1), в соответ-
ствии с которым для любого начального значения n вычисляются элемен-
ты последовательности

T (n) =

{
3n+ 1, если n ≡ 1 (mod 2),

n/2, если n ≡ 0 (mod 2).
(1)

Если n четное, оно делится на 2, а в противном случае преобразуется в чет-
ное 3n+ 1.

Выражение (1) можно представить как частный случай генерации
числовых последовательностей, параметрами которого являются значения
делителя, равного двум, и множителя, равного трем, в формуле преобразо-
вания к делимости. Используя индуктивный подход, представим для обще-
го случая значение делителя как число d, принимающее любое натураль-
ное значение. При использовании значения d = 2 формулу преобразования
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к делимости можно представить в следующем виде (d + 1)n + 1, и после
раскрытия скобок получим dn + n + 1. Величина dn при любом значе-
нии n кратна делителю. При использовании делителя, равного двум, нену-
левой целочисленный остаток от деления принимает единственное значе-
ние, равное единице, поэтому можно сделать вывод, что в сумме n+ 1
роль единицы заключается в дополнении целочисленного остатка до зна-
чения делителя, таким образом, получается величина, кратная делителю.
В итоге сумма всех слагаемых формирует величину, кратную делителю.
При использовании делителя, большего двух, могут получаться различ-
ные значения ненулевых целочисленных остатков, а их количество будет
равно d − 1, следовательно, для каждого конкретного значения целочис-
ленного остатка необходимо к значению n прибавлять соответствующее
дополнение до значения делителя. Величину соответствующего дополне-
ния можно определить по выражению

d−mod(n; d),

где нотация mod(n; d) означает взятие остатка от целочисленного деле-
ния n на d.

В конечном итоге получим следующее выражение (2) для генерации
числовых последовательностей при любом натуральном значении делите-
ля d:

T (n, d) =

{
(d+ 1)n+

(
d−mod(n; d)

)
, если n 6≡ 0 (mod d),

n/d, если n ≡ 0 (mod d).
(2)

Преобразованное к делимости значение n предсказуемо делится на d,
поэтому это значение можно считать промежуточным и не фиксировать
его в числовой последовательности. В этом случае выражение для генера-
ции числовых последовательностей принимает вид (3)

T (n, d) =

{
n+

(
n+ d−mod(n; d)

)
/d, если n 6≡ 0 (mod d),

n/d, если n ≡ 0 (mod d).
(3)

Выполнены экспериментальные вычисления в соответствии с (2) для
значений делителей от 3 до 120, при этом начальные значения n варьиро-
вались от единицы до 1 млрд. Для делителей 5, 7, 8, 13, 18, 19, 21, 22, 26, 28,
30, 32..47, 49..53, 55, 56, 58..67, 69..71, 73..77, 79..84, 86..93, 95..107, 109..114,
116, 117 и 120 (всего 88 значений) генерировались числовые последователь-
ности, заканчивающиеся значением единицы с последующим бесконечным
циклом возврата к значению единицы, как это наблюдается в сиракузских
последовательностях. Таким образом, можно заключить, что, как мини-
мум, в проверенном диапазоне начальных значений n для указанных зна-
чений делителей выражение (2) генерирует множество числовых последо-
вательностей, подобных сиракузским.

Представляют интерес и ситуации, когда для некоторых значений
делителей в рассмотренном диапазоне не генерируются последовательно-
сти, заканчивающиеся значением единицы. В этих случаях возникает за-
цикливание генерации натуральных чисел до получения единицы. Важно
отметить, что не происходит устремлений значений элементов последова-
тельности к бесконечности. Случаи зацикливания можно продемонстри-
ровать на примере использования делителя d = 57. Для начального значе-
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ния n = 2089 наблюдается первый случай зацикливания, и он повторяется
для значений 2126, 2164, 2202, 2241, 2281 и т. д. Между точками зацик-
ливания находятся порядка сорока начальных значений n, для которых
ряд генерируемых чисел заканчивается единицей. Во всех случаях зацик-
ливание реализуется в интервале значений n, больших делителя до 1 млн.,
и в дальнейшем многократно повторяется.

В работе [2] используется вероятностный способ рассмотрения сира-
кузской последовательности, делается вывод о том, что в сиракузской по-
следовательности вероятность уменьшения произвольного числа n больше
его увеличения и единственным частичным пределом является цикл чисел
4, 2, 1. Поскольку в системе генерации числовых последовательностей (2)
генерация сиракузских последовательностей является частным случаем,
допустимо предположить, что и для значений делителя больше двух гене-
рируются последовательности, для которых мера уменьшения элементов
последовательности больше меры их увеличения.

Для сиракузских последовательностей, если элемент — четное число,
то оно уменьшается в 2 раза, а нечетное после преобразования к делимо-
сти и последующего деления увеличивается практически в 1,5 раза. Такая
мера увеличения является самой большой по сравнению с последователь-
ностями с большим значением делителя и ближе всего к мере уменьшения.
В соответствии с (2) после приведения к делимости и последующего деле-
ния элемент последовательности принимает значение примерно n + n/d,
и с увеличением d мера увеличения становится все меньше.

При использовании d = 2 единственное значение, которое может при-
нять элемент последовательности меньше делителя, это единица, что яв-
ляется и завершением последовательности, и началом единственного бес-
конечного цикла 1, 4, 2, 1. Другая картина наблюдается при использова-
нии относительно больших значений делителя. Были выполнены экспери-
ментальные вычисления в соответствии с (2) для ряда значений делителя
от 1000 до 1010 и при варьировании начальных значений n от 1 до 1 млрд.
Во всех случаях числовые последовательности заканчиваются значением
единицы с последующим бесконечным циклом возврата к единице, подобно
сиракузским последовательностям. Ниже представлен числовой ряд с па-
раметрами d = 1001 и n = 1028 в соответствии с (3) в сокращенном вари-
анте

1028, 1030, 1032, 1034, . . . , 1996, 1998, 2000, 2002, 2, 3, 4, 5, . . . , 1001, 1.

Для достижения единицы потребовалось 1488 шагов, а наибольшее
значение равно 2002. Такая последовательность подобна сиракузской толь-
ко тем, что завершается единицей. В начале ряда элементы монотонно
возрастают на две единицы, достигая кратного делителю значения 2002,
и на следующем шаге после деления получаем значение 2, на что потребо-
валось 489 шагов из их общего количества 1488. В соответствии с алгорит-
мом (3) с любого значения элемента, меньшего делителя, с каждым шагом
они увеличиваются на единицу до значения делителя, и на следующем ша-
ге ряд завершается значением единицы. Если использовать терминологию
работы [1], то можно сказать, что при использовании больших значений
делителя у числа-градины не наблюдается головокружительных взлетов,
а имеют место только головокружительные падения.
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У сиракузских последовательностей в явном виде не проявляется
важная особенность алгоритма в соответствии с (2), а именно то, что
при любом значении текущего элемента последовательности, меньшего де-
лителя, после его преобразования к делимости и последующего деления
происходит увеличение на единицу и гарантированно достигается значе-
ние, равное делителю, с последующим получением единицы как заверше-
ние ряда натуральных чисел и началом единственного бесконечного цикла
возврата к единице. Например, при использовании d = 1001 для значений
текущего элемента от 2 до 1000 последовательность гарантированно будет
завершаться единицей.

Для ряда делителей, представленных выше, устойчиво генерируют-
ся последовательности, заканчивающиеся единицей при варьировании на-
чальных значений n до 1 млрд. Для делителей 5, 7 и 8 были продолжены
вычисления при варьировании начальных значений до 100 млрд. И в этом
диапазоне во всех случаях успешно генерировались последовательности,
подобные сиракузским. Как и в случае гипотезы Коллатца, возникает же-
лание в продолжении вычислений до ее опровержения, но этого не проис-
ходит, что как не опровергает, так и не доказывает гипотезу. Так и для де-
лителей 5, 7 и 8 выборочно были дополнительно выполнены вычисления
в диапазоне от 12-разрядных до 16-разрядных значений n в интервале
одного млрд. значений, например для 16-разрядных значений интервал
составил от 1234567812345678 до 12345688132345678 и в аналогичном фор-
мате для других разрядностей. Во всех случаях генерировались после-
довательности, подобные сиракузским. Такие результаты расчетов дают
основание для предположения, что для ряда делителей, включая d = 2,
в соответствии с алгоритмом (2) создаются особые условия или, други-
ми словами, особые пропорции генерации значений n, при которых ис-
ключается возможность повторного появления одинаковых значений как
причины зацикливания до завершения ряда значением единицы. Сохране-
ние особых пропорций генерации значений элементов последовательности
при любом начальном значении натурального числа – вопрос математиче-
ского доказательства.

Экспериментальные вычисления в соответствии с (2) позволяют сде-
лать ряд выводов:

1. Для любого натурального делителя можно получать числовые по-
следовательности, завершающиеся значением единицы.

2. Для ряда делителей при определенных начальных значениях про-
исходит зацикливание до достижения единицы, и такие ряды не могут
считаться подобными сиракузским.

3. Для ряда делителей в проверенном диапазоне начальных значе-
ний n ряд натуральных чисел всегда заканчивается значением единицы,
и их можно считать подобными сиракузским последовательностям.

В соответствии с полученными результатами представляется возмож-
ность формулирования множества гипотез, подобных гипотезе Коллатца,
отличающихся только значениями натурального делителя. В данной ситу-
ации возможно допустить, что для их доказательства, включая и гипотезу
Коллатца, может использоваться единый подход. Если признать достовер-
ным утверждение, что при формировании числовых рядов в соответствии
с (2) мера их уменьшения больше меры увеличения, то единственным пре-
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пятствием получения числовых рядов, подобных сиракузским, становит-
ся повторная генерация одинакового значения как причина зацикливания
до получения единицы.

Приведем пример одной из возможных формулировок гипотезы Кол-
латца:

Любое натуральное число, если оно четное, нужно разделить на 2,
а если нечетное, то умножить на 3 и прибавить 1, и так повторять
последовательно, в итоге последовательность всегда достигнет числа 1.

Формулировку гипотезы Коллатца можно представить в соответ-
ствии с индуктивным/дедуктивным подходом как частный случай и при-
вести примеры формулировок гипотез других частных случаев.

Гипотеза d5. Любое натуральное число, если оно кратно 5, нужно
разделить на 5, а если нет, то умножить на 6 и прибавить дополне-
ние до значения 5 остатка от целочисленного деления этого числа на 5,
и так повторять последовательно, в итоге последовательность всегда
достигнет числа 1.

Гипотеза d7. Любое натуральное число, если оно кратно 7, нужно
разделить на 7, а если нет, то умножить на 8 и прибавить дополне-
ние до значения 7 остатка от целочисленного деления этого числа на 7,
и так повторять последовательно, в итоге последовательность всегда
достигнет числа 1.

Гипотеза d8. Любое натуральное число, если оно кратно 8, нужно
разделить на 8, а если нет, то умножить на 9 и прибавить дополне-
ние до значения 8 остатка от целочисленного деления этого числа на 8,
и так повторять последовательно, в итоге последовательность всегда
достигнет числа 1.

На основании представленных частных случаев в соответствии с ин-
дуктивным подходом можно сформулировать гипотезу для общего случая:

Гипотеза d. Для любого натурального числа имеется неограничен-
ный ряд натуральных значений делителей d: 2, 5, 7, 8, 13, 18, 19, 21, 22,
26, 28, 30, 32..47 и т. д., для каждого из которых, если число кратно d, его
нужно разделить на d, а если нет, то умножить на d+ 1 и прибавить
дополнение до значения d остатка от целочисленного деления этого чис-
ла на d, в итоге последовательность всегда достигнет числа 1.

По месту публикации гипотезы Коллатца формируемые ряды нату-
ральных чисел в соответствии с гипотезой получили название сиракузские.
Вполне логично, придерживаясь этого правила, формируемые ряды нату-
ральных чисел в соответствии с гипотезой общего случая называть ива-
новскими.

Вычисление элементов последовательностей в соответствии с (2) пре-
дельно простое и зависит от двух параметров — начального значения n
и делителя d. Предстоит доказать, для каких значений делителя исключа-
ется возможность генерации одинаковых значений элементов ряда до по-
лучения единицы.
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