\ Содержание \ Выпуск 8 \ Аннотация: ... M & A
Математика
и ее приложения
  Предыдущая аннотация выпуска  Следующая аннотация выпуска
Главная
 
Об издании
 
Содержание
(по выпускам)
Алфавитный каталог
(авторы - статьи)
Правила оформления
рукописей
Техническая
поддержка
Новости и
объявления
 

А н н о т а ц и я   -   в ы п у с к   8   (2011)

Томина И.В.

Связь между смешанными граничными задачами для оператора Лапласа на прямоугольнике и прямоугольном треугольнике с углом \pi / 6

// Математика и ее приложения. Выпуск 8. С. 139-144

Аннотация
Рассматривается связь между собственными функциями (и соответствующими им собственными числами) смешанных граничных задач для оператора Лапласа на прямоугольнике и на прямоугольном треугольнике с острым углом \pi / 6 (на некоторых сторонах задается граничное условие Дирихле, а на оставшихся - граничное условие Неймана).
Ключевые слова:
оператор Лапласа, прямоугольный треугольник, смешанные граничные условия, собственные числа, собственные функции.
Статья в формате PDF (426 Kb)
Публикации авторов в данном журнале:  Томина И.В.