Previous year Main page Next year

Year 2025
Issue 1

D. N. Azarov, D. V. Turtin Ivanovo logical-algebraic school

The article pays much attention to the formation and development of the world-famous Ivanovo logical-algebraic school. The origin of the logical-algebraic school is directly related to the outstanding modern mathematician Academician A. I. Maltsev. The contribution of A. I. Maltsev and his students to the development of the school is indicated. The current state of the Ivanovo algebraic school and its role in modern mathematical science are described.

Full text (Russian) (PDF, 278 Kb)

V. E. Goncharenko Formation of numerical sequences similar to those of Syracuse

An expression is used to form numerical sequences of natural numbers with an arbitrary value of the divisor, in which the Syracusan sequences are a special case according to Collatz's hypothesis. For a divisor equal to three, in the range of initial values from one to 100 million, it is possible to generate sequences similar to those of Syracuse if various methods of reduction to divisibility are used. For a divisor value from 1000 to 1010, and when the initial values are varied from one to 100 million, in all cases these sequences end with the value of one, similar to the Syracusan sequences. Such series are characterized by a slight increase after reduction to divisibility and subsequent division. It is concluded that it is possible to generate an unlimited number of sequences similar to the Syracuse sequences.

Full text (Russian) (PDF, 346 Kb)

P. G. Kononenko Algorithm for compensation of color distortions during printing

A computational algorithm is proposed to compensate for printing distortions based on the idea of dividing the Euclidean space by Delaunay.

Full text (Russian) (PDF, 515 Kb)

Issue 2

V. E. Goncharenko Inductive approach to the Collatz conjecture

By applying an inductive approach to the Collatz conjecture, we obtain an expression for the formation of numerical sequences using any natural value of the divisor. Calculations were performed for divisor values ranging from 3 to 120, with initial values of the natural number varying from 1 to 1 billion. For a number of divisors, numerical sequences are consistently formed that end with the value 1, similar to the Syracuse sequences. Hypotheses similar to the Collatz conjecture are presented.

Full text (Russian) (PDF, 325 Kb)



Previous year Main page Next year