ГРУППЫ С ОДНИМ ОПРЕДЕЛЯЮЩИМ СООТНОШЕНИЕМ

На главную страницу архива На главную страницу семинара

 

Финитная аппроксимируемость

Wise, Daniel T. Residual finiteness of quasi-positive one-relator groups.
    J. Lond. Math. Soc., II. Ser. 66, No.2, 334-350 (2002). [ISSN 0024-6107]

Wise, Daniel T. The residual finiteness of positive one-relator groups.
    Comment. Math. Helv. 76, No.2, 314-338 (2001). [ISSN 0010-2571; ISSN 1420-8946]

[A] Rosenberger, G. Faithful linear representations and residual finiteness of some products of cyclics with one relation.
    Sib. Math. J. 32, No.1, 166-168 (1991); translation from Sib. Mat. Zh. 32, No.1(185), 204-206 (1991).

[A] Allenby, R.B.J.T.; Tang, C.Y. The residual finiteness of a class of 1-relator groups.
    Glasg. Math. J. 29, 267-269 (1987).

Baumslag, G. Free subgroups of certain one-relator groups defined by positive words.
    Math. Proc. Camb. Phil. Soc. 93, 247-251 (1983).

[A] Allenby, R.B.J.T.; Tang, C.Y. Residual finite one-relator group with torsion.
    Arch. Math. 37, No.2, 97–105 (1981).

Allenby, R.B.J.T.; Tang, C.Y. The residual finiteness of some one-relator groups with torsion.
    J. Algebra 71, 132-140 (1981).

Brunner, A.M. On a class of one-relator groups.
    Can. J. Math. 32, No.2, 414-420 (1980).

Allenby, R.B.J.T.; Moser, L.E.; Tang, C.Y. The residual finiteness of certain one-relator groups.
    Proc. Amer. Math. Soc. 78, No.1, 8–10 (1980).

Baumslag, B.; Tretkoff, M. Residually finite HNN-extensions.
    Comm. Algebra. 6, 179-194 (1978).

Meskin, Stephen Nonresidually finite one-relator groups.
    Trans. Amer. Math. Soc. 164, Febr, 105–114 (1972).

[A] Baumslag, G. A non-cyclic one-relator group all of whose finite quotients are cyclic.
    J. Austral. Math. Soc. 10, No.3,4, 497–498 (1968).



Хопфовость и конечные гомоморфные образы

[A] Raptis, E.; Talelli, O.; Varsos, D. On the Hopficity of certain HNN-extensions with base a Baumslag-Solitar group.
    Algebra Colloq. 9, No.1, 39-48 (2002). [ISSN 1005-3867; ISSN 0219-1733]

[A] Witbooi, Peter Finite images of groups.
    Quaest. Math. 23, No.3, 279-285 (2000). ISSN{1607-3606}

[A] Anhel, Michael. The endomorphisms of certain one-relator groups and the generalized Hopfian Problem.
    Bul. Amer. Math. Soc. 77, No.3, 348–350 (1971).



Аппроксимируемость относительно сопряженности

Allenby, R.B.J.T. Conjugacy separability of a class of 1-relator products.
    Proc. Am. Math. Soc. 116, No.3, 621-628 (1992).

[A] Allenby, R.B.J.T.; Tang, C.Y. Conjugacy separability of certain 1-relator groups with torsion.
    J. Algebra 103, 619-637 (1986).

[A] Allenby, R.B.J.T.; Tang, C.Y. Conjugacy separability of certain classes of groups.
    Math. Repts. Acad. Sci. Can. 6, No.1, 25–29 (1984).

Tang, C.Y. Conjugacy separability of certain one-relator groups.
    Proc. Amer. Math. Soc. 86, No.3, 379–384 (1982).



Отделимость конечно порожденных подгрупп

[A]* Wong, P.C. Subgroup separability of certain HNN extensions.
    Rocky Mt. J. Math. 23, No.1, 391-394 (1993).

[A] Burns, R.G.; Karrass, A.; Solitar, D. A note on groups with separable finitely generated subgroups.
    Bull. Aust. Math. Soc. 36, 153-160 (1987).



Нильпотентная аппроксимируемость

[A] Kim, Goansu; McCarron, James Some residually p-finite one relator groups.
    J. Algebra 169, No.3, 817-826 (1994).

[A] Baumslag, Gilbert On the residual nilpotence of certain one-relator groups.
    Communs. Pure and Appl. Math. 21, No.5, 491–506 (1968).



* Имеется печатный оттиск данной статьи



На главную страницу архива На главную страницу семинара