ОБОБЩЕННЫЕ СВОБОДНЫЕ ПРОИЗВЕДЕНИЯ

На главную страницу архива На главную страницу семинара

 

Финитная аппроксимируемость

Liebeck, Martin W.; Shalev, Aner Residual properties of free products of finite groups.
    J. Algebra 268, No.1, 286-289 (2003). [ISSN 0021-8693]

Liebeck, Martin W.; Shalev, Aner Residual properties of the modular group and other free products.
    J. Algebra 268, No.1, 264-285 (2003). [ISSN 0021-8693]

[A] Wise, Daniel T. The residual finiteness of negatively curved polygons of finite groups.
    Invent. Math. 149, No.3, 579-617 (2002). [ISSN 0020-9910; ISSN 1432-1297]

Raptis, E.; Varsos, D. The residual finiteness of HNN-extensions and generalized free products of nilpotent groups: A characterization.
    J. Aust. Math. Soc., Ser. A 53, No.3, 408-420 (1992).

Shirvani, M. A converse to a residual finiteness theorem of G. Baumslag.
    Proc. Am. Math. Soc. 104, No.3, 703-706 (1988).

[A] Tamburins, Heara; Wilson, John. A residual property of certain free products.
    Math. J. 158, No.4, 525–530 (1984).

Wehrfritz, B.A.F. The residual finiteness of some generalised free products.
    J. Lond. Math. Soc., II. Ser. 24, 123-126 (1981).

Zuk, I.K. A note on residual finiteness of generalized free products.
    Dokl. Akad. Nauk BSSR 23, 112-114 (1979).

[A] Tretkoff, Marvin The residual finiteness of certain amalgamated free products.
    Math. Z. No.2, 179–182 (1973).

Boler, James; Evans, Benny. The free product of residually finite groups amalgamated along retracts is residually finite.
    Proc. Amer. Math. Soc. 37, No.1, 50–52 (1973).

Gregorac, R.J. On residually finite generalized free products.
    Proc. Amer. Math. Soc. 24, No.3, 353–355 (1970).

Dyer, Joan Landman On the residual finiteness of generalized free products.
    Trans. Amer. Math. Soc. 133, No.1, 131–143 (1968).

Baumslag, G. On the residual finiteness of generalised free products of nilpotent groups.
    Trans. Amer. Math. Soc. 106, 193-209 (1963).



Аппроксимируемость относительно сопряженности

Kim, Goansu; Tang, C.Y. Separability properties of certain tree products of groups.
    J. Algebra 251, No.1, 323-349 (2002). [ISSN 0021-8693]

[A] Kim, Goansu Conjugacy separability of certain free product amalgamating retracts.
    Bull. Korean Math. Soc. 37, No.4, 811-827 (2000). [ISSN 1015-8634]

[A]* Ribes, L.; Segal, D.; Zalesskii, P.A. Conjugacy separability and free products of groups with cyclic amalgamation.
    J. Lond. Math. Soc., II. Ser. 57, No.3, 609-628 (1998). [ISSN 0024-6107]

[A]* Wilson, J.S.; Zalesskii, P.A. Conjugacy separability of certain Bianchi groups and HNN extensions.
    Math. Proc. Camb. Philos. Soc. 123, No.2, 227-242 (1998). [ISSN 0305-0041]

Kim, Goansu Conjugacy separability of free products with amalgamation.
    Commun. Korean Math. Soc. 12, No.3, 521-530 (1997). [ISSN 1225-1763]

Tang, C.Y. Conjugacy separability of generalized free products of surface groups.
    J. Pure Appl. Algebra 120, No.2, 187-194 (1997). [ISSN 0022-4049]

Kim, Goansu; Tang, C.Y. A criterion for the conjugacy separability of amalgamated free products of conjugacy separable groups.
    J. Algebra 184, No.3, 1052-1072, Art. No.0298 (1996). [ISSN 0021-8693]

Kim, Goansu; Mccarron, James; Tang, C.Y. On generalised free products of conjugacy separable groups.
    J. Algebra 180, 121-135, (1996). [ISSN 0021-8693]

Ribes, Luis; Zalesskij, Pavel A. Conjugacy separability of amalgamated free products of groups.
    J. Algebra 179, No.3, 751-774, Art. No.0035 (1996). [ISSN 0021-8693]

[A] Tang, C.Y. Conjugacy separability of generalized free products of certain conjugacy separable groups.
    Can. Math. Bull. 38, No.1, 120-127 (1995).

Lochart, Jody Meyer. An HNN-extension with cyclic associated subgroups and with unsolvable conjugacy problem.
    Trans. Amer. Math. Soc. 313, No.1, 331–345 (1989).

[A] Dyer, Joan L. Separating conjugates in amalgamated free products and HNN-extensions.
    J. Austral. Math. Soc. A29, No.1, 35–51 (1980).

Stebe, Peter F. Conjugacy separability of certain free products with amalgamation.
    Trans. Amer. Math. Soc. 156, May, 119–129 (1971).

Stebe, P.F. A residual property of certain groups.
    Proc. Amer. Math. Soc. No.1, 37–42 (1970).



Отделимость конечно порожденных подгрупп

Hamilton, Emily Classes of separable two-generator free subgroups of 3-manifold groups.
    Topology Appl. 131, No.3, 239-254 (2003). [ISSN 0166-8641]

Niblo, Graham A.; Wise, Daniel T. Subgroup separability, knot groups and graph manifolds.
    Proc. Am. Math. Soc. 129, No.3, 685-693 (2001). [ISSN 0002-9939; ISSN 1088-6826]

Gitik, Rita Graphs and separability properties of groups.
    J. Algebra 188, No.1, 125-143, Art. No.JA966847 (1997). [ISSN 0021-8693]

Allenby, R.B.J.T.; Doniz, David A free product of finitely generated nilpotent groups amalgamating a cycle that is not subgroup separable.
    Proc. Am. Math. Soc. 124, No.4, 1003-1005 (1996). [ISSN 0002-9939; ISSN 1088-6826]

[A] Allenby, R.B.J.T.; Tang, C.Y. Subgroup separability of generalized free products of free-by-finite groups.
    Can. Math. Bull. 36, No.4, 385-389 (1993).

[A] Gitik, Rita; Rips, Eliyahu A necessary condition for A*a=bB to be LERF.
    Isr. J. Math. 73, No.1, 123-125 (1991).

[A] Rips, E. An example of a non-LERF group which is a free product of LERF groups with an amalgamated cyclic subgroup.
    Isr. J. Math. 70, No.1, 104-110 (1990).

Brunner, A.M.; Burns, R.G.; Solitar, D. The subgroup separability of free products of two free groups with cyclic amalgamation.
    Contributions to group theory, Contemp. Math. 33, 90-115 (1984).

Allenby, R.B.J.T.; Gregorac, R.J. On locally extended residually finite groups.
    Lecture Notes Math. 319, 9-17 (1973).

[A] Романовский, Н.С. О финитной аппроксимируемости свободных произведений относительно вхождения.
    Изв. АН СССР. Сер. Математика. 33, No.6, 1324–1329 (1969).



Отделимость циклических подгрупп

[A]* Wong, P.C.; Tang, C.K. Residual finiteness of generalized free products of isomorphic groups.
    Algebra Colloq. 4, No.2, 133-139 (1997). [ISSN 1005-3867]

[A]* Kim, Goansu Cyclic subgroup separability of generalized free products.
    Can. Math. Bull. 36, No.3, 296-302 (1993).

[A] Wong, P.C.; Koay, H.L. Generalized free products of \pic groups.
    Rocky Mt. J. Math. 22, No.4, 1589-1593 (1992).

Allenby, R.B.J.T.; Gregorac, R.J. On locally extended residually finite groups.
    Lecture Notes Math. 319, 9-17 (1973).



Отделимость двойных смежных классов и произведений

Gitik, Rita; Margolis, Stuart W.; Steinberg, Benjamin On the Kurosh theorem and separability properties.
    J. Pure Appl. Algebra 179, No.1-2, 87-97 (2003). [ISSN 0022-4049]

[A] Coulbois, Thierry Free product, profinite topology and finitely generated subgroups.
    Int. J. Algebra Comput. 11, No.2, 171-184 (2001). [ISSN 0218-1967]

[A]* You, Shihong The product separability of the generalized free product of cyclic groups.
    J. Lond. Math. Soc., II. Ser. 56, No.1, 91-103 (1997). [ISSN 0024-6107]



Нильпотентная аппроксимируемость

Kim, Goansu; Tang, C.Y. On generalized free products of residually finite p-groups.
    J. Algebra 201, No.1, 317-327, Art. No.JA977256 (1998). [ISSN 0021-8693]

Doniz, David Residual Properties of Free Products of Infinitely Many Nilpotent Groups Amalgamating Cycles.
    J. Algebra 179, 930-935 (1996). [ISSN 0021-8693]

[A] Kim, Goansu; McCarron, James On amalgamated free products of residually p-finite groups.
    J. Algebra 162, No.1, 1-11 (1993).

Lichtman, A.L. Necessary and sufficient conditions for the residual nilpotence of free products of groups.
    J. Pure Appl. Algebra 12, 49-64 (1978).

[A] Peg, I.M.S. Free products and residual nilpotency.
    Bull. Amer. Math. Soc. 1, No.1, 11–13 (1969).

Higman, G. Amalgams of p-groups.
    J.Algebra 1, 301-305 (1964).

Gruenberg, K.W. Residual properties of infinite soluble groups.
    Proc. Lond. Math. Soc. 7, 29-62 (1957).



Мощные группы

[A]* Wong, P.C.; Tang, C.K. Residual finiteness of generalized free products of isomorphic groups.
    Algebra Colloq. 4, No.2, 133-139 (1997). [ISSN 1005-3867]

[A] Wong, P.C.; Koay, H.L. Generalised free products of isomorphic potent groups.
    Bull. Malays. Math. Soc., II. Ser. 11, No.2, 35-38 (1988).

Allenby, R.B.J.T. The potency of cyclically pinched one-relator groups.
    Arch. Math. 36, 204-210 (1981).



Прочее

[A] Baumslag, Benjamin; Levin, Frank; Rosenberger, Gerhard A cyclically pinched product of free groups which is not residually free.
    Math. Z. 212, No.4, 533-534 (1993).

Baumslag, B. Residually free groups.
    Proc. London. Math. Soc. (3) 17, 402-418 (1967).



* Имеется печатный оттиск данной статьи



На главную страницу архива На главную страницу семинара